Learning Dynamic Systems from Time-series Data - An Application to Gene Regulatory Networks
Ivo J. P. M. Timoteo, Sean B. Holden
2015
Abstract
We propose a local search approach for learning dynamic systems from time-series data, using networks of differential equations as the underlying model. We evaluate the performance of our approach for two scenarios: first, by comparing with an l1-regularization approach under the assumption of a uniformly weighted network for identifying systems of masses and springs; and then on the task of learning gene regulatory networks, where we compare it with the best performers in the DREAM4 challenge using the original dataset for that challenge. Our method consistently improves on the performance of the other methods considered in both scenarios.
References
- Ackers, G. K., Johnson, A. D., and Shea, M. A. (1982). Quantitative model for gene regulation by lambda phage repressor. Proceedings of the National Academy of Sciences, 79(4):1129-1133.
- Banerjee, O., Ghaoui, L., and D'Aspremont, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learing Research, 9:485-516.
- Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Muertter, R. N., Holko, M., Ayanbule, O., Yefanov, A., and Soboleva, A. (2011). NCBI GEO: archive for functional genomics data set - 10 years on. Nucleic Acids Research, 39:D1005-D1010.
- Bento, J., Ibrahimi, M., and Montanari, A. (2010). Learning networks of stochastic differential equations. In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, NIPS, pages 172-180. Curran Associates, Inc.
- Bento, J., Ibrahimi, M., and Montanari, A. (2011). Information theoretic limits on learning stochastic differential equations. In Kuleshov, A., Blinovsky, V., and Ephremides, A., editors, ISIT, pages 855-859. IEEE.
- Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., and Thorsson, V. (2006). The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 7(5).
- Dream4Challenge (2009). DREAM4, Challenge 2 - In Silico Network Challenge. http://wiki.c2b2.columbia.edu/dream/index.php?title=D4c2.
- Elidan, G., Ninio, M., Friedman, N., and Schuurmans, D. (2002). Data perturbation for escaping local maxima in learning. In In AAAI, pages 132-139.
- Gardner, T. S. and Collins, J. J. (2000). Neutralizing noise in gene networks. Nature, 405(6786).
- Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In Blondel, V., Boyd, S., and Kimura, H., editors, Recent Advances in Learning and Control, volume 371 of Lecture Notes in Control and Information Sciences, pages 95-110. Springer London.
- Grant, M. and Boyd, S. (2012). CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx.
- Klamt, S., Flassig, R., and Sundmacher, K. (2010). TRANSWESD: inferring cellular networks with transitive reduction. Bioinformatics, 26(17):2160-2168.
- Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.
- Ly, D. L. and Lipson, H. (2012). Learning symbolic representations of hybrid dynamical systems. Journal of Machine Learning Research, 13:3585-3618.
- Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D., and Stolovitzky, G. (2010). Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences.
- Marbach, D., Schaffter, T., Mattiussi, C., and Floreano, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2):229-239.
- Pinna, A., Soranzo, N., and de la Fuente, A. (2010). From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS ONE 5(10): e12912. doi:10.1371/journal.pone.0012912.
- Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X., Clarke, N. D., AltanBonnet, G., and Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE, 5(2):e9202.
- Schaffter, T., Marbach, D., and Floreano, D. (2011). GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27(16):2263-2270.
- Voortman, M., Dash, D., and Druzdzel, M. (2010). Learning why things change: The difference-based causality learner. In Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI).
- Yip, K., Alexander, R., Yan, K., and Gerstein, M. (2010). Improved reconstruction of In Silico gene regulatory networks by integrating knockout and perturbation data. PLoS ONE 5(1): e8121. doi:10.1371/journal.pone.0008121, 5(1):e8121.
Paper Citation
in Harvard Style
J. P. M. Timoteo I. and B. Holden S. (2015). Learning Dynamic Systems from Time-series Data - An Application to Gene Regulatory Networks . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-758-077-2, pages 324-332. DOI: 10.5220/0005282303240332
in Bibtex Style
@conference{icpram15,
author={Ivo J. P. M. Timoteo and Sean B. Holden},
title={Learning Dynamic Systems from Time-series Data - An Application to Gene Regulatory Networks},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2015},
pages={324-332},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005282303240332},
isbn={978-989-758-077-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - Learning Dynamic Systems from Time-series Data - An Application to Gene Regulatory Networks
SN - 978-989-758-077-2
AU - J. P. M. Timoteo I.
AU - B. Holden S.
PY - 2015
SP - 324
EP - 332
DO - 10.5220/0005282303240332