ECG Biometrics Using a Dissimilarity Space Representation

Francisco Marques, Carlos Carreiras, André Lourenço, Ana Fred, Rui Ferreira

2015

Abstract

Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classification on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects´ signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1.53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.

References

  1. Agrafioti, F. and Hatzinakos, D. (2008). Fusion of ECG sources for human identification. In Communications, Control and Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on, pages 1542-1547.
  2. Biel, L., Pettersson, O., Philipson, L., and Wide, P. (2001). ECG analysis: a new approach in human identification. Instrumentation and Measurement, IEEE Transactions on, 50(3):808-812.
  3. Carreiras, C., Lourenc¸o, A., Fred, A., and Ferreira, R. (2014). ECG signals for biometric applications - are we there yet? In 11th Int. Conf. on Informatics in Control, Automation and Robotics, pages 765-772. Scitepress.
  4. Chan, A. D. C., Hamdy, M., Badre, A., and Badee, V. (2008). Wavelet distance measure for person identification using electrocardiograms. Instrumentation and Measurement, IEEE Transactions on, 57(2):248-253.
  5. Connell, S. D. and Jain, A. K. (1999). Template-based online character recognition. Pattern Recognition, 34:1- 14.
  6. Conover, M. (2003). Understanding Electrocardiography. Mosby.
  7. de Chazal, P., O'Dwyer, M., and Reilly, R. (2004). Automatic classification of heartbeats using ECG morphology and heartbeat interval features. Biomedical Engineering, IEEE Transactions on, 51(7):1196-1206.
  8. Duin, R., Loog, M., Pe¸kalska, E., and Tax, D. (2010). Feature-based dissimilarity space classification. In Ü nay, D., C¸taltepe, Z., and Aksoy, S., editors, Recognizing Patterns in Signals, Speech, Images and Videos, volume 6388 of Lecture Notes in Computer Science, pages 46-55. Springer Berlin Heidelberg.
  9. Duin, R. P. and Pe¸kalska, E. (2011). The dissimilarity representation for structural pattern recognition. In San Martin, C. and Kim, S.-W., editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, volume 7042 of Lecture Notes in Computer Science, pages 1-24. Springer Berlin Heidelberg.
  10. Duin, R. P. and Pe¸kalska, E. (2012). The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognition Letters, 33(7):826 - 832.
  11. Fang, S.-C. and Chan, H.-L. (2009). Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recognition, 42(9):1824 - 1831.
  12. Fatemian, S. and Hatzinakos, D. (2009). A new ECG feature extractor for biometric recognition. In Digital Signal Processing, 2009 16th International Conference on, pages 1-6.
  13. Friesen, G., Jannett, T., Jadallah, M., Yates, S., Quint, S., and Nagle, H. (1990). A comparison of the noise sensitivity of nine qrs detection algorithms. Biomedical Engineering, IEEE Transactions on, 37(1):85-98.
  14. Hamilton, P. (2002). Open source ECG analysis. In Computers in Cardiology, 2002, pages 101-104.
  15. Labati, R. D., Sassi, R., and Scotti, F. (2013). ECG biometric recognition: permanence analysis of qrs signals for 24 hours continuous authentication. In IEEE International Workshop on Information Forensics and Security (WIFS), pages 31-36. Institute of electrical and electronics engineers.
  16. Li, M. and Narayanan, S. (2010). Robust ECG biometrics by fusing temporal and cepstral information. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 1326-1329.
  17. Liu, N. and Wang, Y. (2008). Template selection for on-line signature verification. In Proc. of the 19th Int. Conf. on Pattern Recognition (ICPR), pages 1-4.
  18. Lourenc¸o, A., Carreiras, C., Silva, H., and Fred, A. (2014). ECG biometrics: A template selection approach. In Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, pages 1-6.
  19. Lourenc¸o, A., Silva, H., Carreiras, C., et al. (2013). Outlier detection in non-intrusive ECG biometric system. In Image Analysis and Recognition, pages 43-52. Springer Berlin Heidelberg.
  20. Lumini, A. and Nanni, L. (2006). A clustering method for automatic biometric template selection. Pattern Recognition, 39(3):495-497.
  21. Odinaka, I., Lai, P.-H., Kaplan, A., O'Sullivan, J., Sirevaag, E., and Rohrbaugh, J. (2012). ECG biometric recognition: A comparative analysis. Information Forensics and Security, IEEE Transactions on, 7(6):1812-1824.
  22. Plataniotis, K., Hatzinakos, D., and Lee, J. (2006). ECG biometric recognition without fiducial detection. In Biometric Consortium Conference, 2006 Biometrics Symposium: Special Session on Research at the, pages 1-6.
  23. Shen, T. W., Tompkins, W., and Hu, Y. H. (2002). Onelead ECG for identity verification. In Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, volume 1, pages 62-63 vol.1.
  24. Shen, Tsu-Wang, T. W. J. and Hu, Y. H. (2011). Implementation of a one-lead ECG human identification system on a normal population. Journal of Engineering and Computer Innovations, 2(1):12-21.
  25. Silva, H., Gamboa, H., and Fred, A. (2007). One lead ECG based personal identification with feature subspace ensembles. In Perner, P., editor, Machine Learning and Data Mining in Pattern Recognition, volume 4571 of Lecture Notes in Computer Science, pages 770-783. Springer Berlin Heidelberg.
  26. Singla, S. and Sharma, A. (2010). ECG as biometric in the automated world. International Journal of Computer Science & Communication, 1:281-283.
  27. Uludag, U., Ross, A., and Jain, A. (2004). Biometric template selection and update: a case study in fingerprints. Pattern Recognition, 37(7):1533-1542.
  28. Wang, J., She, M., Nahavandi, S., and Kouzani, A. (2013). Human identification from ECG signals via sparse representation of local segments. Signal Processing Letters, IEEE, 20(10):937-940.
  29. Wang, Y., Agrafioti, F., Hatzinakos, D., and Plataniotis, K. (2008). Analysis of human electrocardiogram for biometric recognition. EURASIP Journal on Advances in Signal Processing, 2008(1):148658.
  30. Wübbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R.- D., and Elster, C. (2007). Verification of humans using the electrocardiogram. Pattern Recognition Letters, 28(10):1172 - 1175.
  31. Ye, C., Coimbra, M., and Kumar, B. (2010). Investigation of human identification using two-lead electrocardiogram (ecg) signals. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on, pages 1-8.
Download


Paper Citation


in Harvard Style

Marques F., Carreiras C., Lourenço A., Fred A. and Ferreira R. (2015). ECG Biometrics Using a Dissimilarity Space Representation . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 350-359. DOI: 10.5220/0005289303500359


in Bibtex Style

@conference{biosignals15,
author={Francisco Marques and Carlos Carreiras and André Lourenço and Ana Fred and Rui Ferreira},
title={ECG Biometrics Using a Dissimilarity Space Representation},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={350-359},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005289303500359},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - ECG Biometrics Using a Dissimilarity Space Representation
SN - 978-989-758-069-7
AU - Marques F.
AU - Carreiras C.
AU - Lourenço A.
AU - Fred A.
AU - Ferreira R.
PY - 2015
SP - 350
EP - 359
DO - 10.5220/0005289303500359