Autonomous Pareto Front Scanning using an Adaptive Multi-Agent System for Multidisciplinary Optimization

Julien Martin, Jean-Pierre Georgé, Marie-Pierre Gleizes, Mickaël Meunier

2015

Abstract

Multidisciplinary Design Optimization (MDO) problems can have a unique objective or be multi-objective. In this paper, we are interested in MDO problems having at least two conflicting objectives. This characteristic ensures the existence of a set of compromise solutions called Pareto front. We treat those MDO problems like Multi-Objective Optimization (MOO) problems. Actual MOO methods suffer from certain limitations, especially the necessity for their users to adjust various parameters. These adjustments can be challenging, requiering both disciplinary and optimization knowledge. We propose the use of the Adaptive Multi-Agent Systems technology in order to automatize the Pareto front obtention. ParetOMAS (Pareto Optimization Multi-Agent System) is designed to scan Pareto fronts efficiently, autonomously or interactively. Evaluations on several academic and industrial test cases are provided to validate our approach.

References

  1. Ben-Tal, A. (1980). Characterization of pareto and lexicographic optimal solutions. In Fandel, G. and Gal, T., editors, Multiple Criteria Decision Making Theory and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages 1-11. Springer Berlin Heidelberg.
  2. Benson, H. (1978). Existence of efficient solutions for vector maximization problems. Journal of Optimization Theory and Applications, 26(4):569-580.
  3. Capera, D., Fanchon, J., Georgé, J.-P., and Camps, V. (2005). A generic model based on automata for multiagent systems. In EUMAS, pages 79-90.
  4. Capera, D., Georgé, J., Gleizes, M.-P., and Glize, P. (2003). The amas theory for complex problem solving based on self-organizing cooperative agents. In Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on, pages 383-388.
  5. Charnes, A. and Cooper, W. (1977). Goal programming and multiple objective optimizations: Part 1. European Journal of Operational Research, 1(1):39 - 54.
  6. Coello, C. A. C. (1999). A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information systems, 1(3):269-308.
  7. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons.
  8. Dréo, J., Pétrowski, A., Siarry, P., and Taillard, E. (2006). Metaheuristics for Hard Optimization: Methods and Case Studies. Springer.
  9. Goldberg, D. E. et al. (1989). Genetic algorithms in search, optimization, and machine learning, volume 412. Addison-wesley Reading Menlo Park.
  10. Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimization. In Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, pages 41-49. Hillsdale, NJ: Lawrence Erlbaum.
  11. Horn, J. (1997). Multicriterion decision making. In Back, T., Fogel, D. B., and Michalewicz, Z., editors, Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol, UK, UK, 1st edition.
  12. Hwang, C. L., Masud, A. S. M., et al. (1979). Multiple objective decision making-methods and applications, volume 164. Springer.
  13. Jin, Y., Olhofer, M., and Sendhoff, B. (2001). Dynamic weighted aggregation for evolutionary multi-objective optimization: Why does it work and how?
  14. Jorquera, T., Georgé, J.-P., Gleizes, M.-P., and Régis, C. (2013). A Natural Formalism and a MultiAgent Algorithm for Integrative Multidisciplinary Design Optimization (regular paper). In IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), Atlanta, USA, 17/11/2013-20/11/2013. IEEE Computer Society.
  15. Kaisa Miettinen, M. M. M. (2000). Interactive multiobjective optimization system www-nimbus on the internet. Computers and Operations Research, 27(7- 8):709-723.
  16. Kim, I. and de Weck, O. (2005). Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2):149-158.
  17. Picard, G. and Glize, P. (2005). Model and experiments of local decision based on cooperative self-organization. In IICAI, pages 3009-3024.
  18. Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3):221-248.
  19. Tabucanon, M. T. (1988). Multiple criteria decision making in industry. Elsevier Amsterdam.
  20. Talbi, E.-G. (2009). Metaheuristics - From Design to Implementation. Wiley.
  21. Tappeta, R., Renaud, J., and Rodríguez, J. (2002). An interactive multiobjective optimization design strategy for decision based multidisciplinary design. Engineering Optimization, 34(5):523-544.
  22. Yildirim, K. S. and G ürcan, O . (2014). Adaptive synchronization of robotic sensor networks. In International Workshop on Robotic Sensor Networks, part of CyberPhysical Systems Week.
Download


Paper Citation


in Harvard Style

Martin J., Georgé J., Gleizes M. and Meunier M. (2015). Autonomous Pareto Front Scanning using an Adaptive Multi-Agent System for Multidisciplinary Optimization . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-073-4, pages 263-271. DOI: 10.5220/0005293302630271


in Bibtex Style

@conference{icaart15,
author={Julien Martin and Jean-Pierre Georgé and Marie-Pierre Gleizes and Mickaël Meunier},
title={Autonomous Pareto Front Scanning using an Adaptive Multi-Agent System for Multidisciplinary Optimization},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2015},
pages={263-271},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005293302630271},
isbn={978-989-758-073-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Autonomous Pareto Front Scanning using an Adaptive Multi-Agent System for Multidisciplinary Optimization
SN - 978-989-758-073-4
AU - Martin J.
AU - Georgé J.
AU - Gleizes M.
AU - Meunier M.
PY - 2015
SP - 263
EP - 271
DO - 10.5220/0005293302630271