Improved Automatic Recognition of Engineered Nanoparticles in Scanning Electron Microscopy Images

Stephen Kockentiedt, Klaus Tönnies, Erhardt Gierke, Nico Dziurowitz, Carmen Thim, Sabine Plitzko

2015

Abstract

The amount of engineered nanoparticles produced each year has grown for some time and will grow in the coming years. However, if such particles are inhaled, they can be toxic. Therefore, to ensure the safety of workers, the nanoparticle concentrations at workplaces have to be measured. This is usually done by gathering the particles in the ambient air and then taking images using scanning electron microscopy. The particles in the images are then manually identified and counted. However, this task takes much time. Therefore, we have developed a system to automatically find and classify particles in these images (Kockentiedt et al., 2012). In this paper, we present an improved version of the system with two new classification feature types. The first are Haralick features. The second is a newly developed feature which estimates the counts of electrons detected by the scanning electron microscopy for each particle. In addition, we have added an algorithm to automatically choose the classifier type and parameters. This way, no expert is needed when the user wants to train the system to recognize a previously unknown particle type. The improved system yields much better results for two types of engineered particles and shows comparable results for a third type.

References

  1. Buades, A., Coll, B., and Morel, J.-M. (2005). A non-local algorithm for image denoising. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 60-65. IEEE.
  2. Flores, A. B., Robles, L. A., Arias, M. O., and Ascencio, J. A. (2003). Small metal nanoparticle recognition using digital image analysis and high resolution electron microscopy. Micron, 34(2):109-118.
  3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1):10-18.
  4. Jain, A. K., Duin, R. P., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4- 37.
  5. Kockentiedt, S., Tönnies, K., and Gierke, E. (2014). Predicting the influence of additional training data on classification performance for imbalanced data. In Jiang, X., Hornegger, J., and Koch, R., editors, Proceedings of the 36th German Conference on Pattern Recognition, GCPR 2014, volume 8753 of Lecture Notes in Computer Science, pages 377-387. Springer International Publishing.
  6. Kockentiedt, S., Tönnies, K., Gierke, E., Dziurowitz, N., Thim, C., and Plitzko, S. (2012). Automatic detection and recognition of engineered nanoparticles in SEM images. In VMV 2012: Vision, Modeling & Visualization, pages 23-30. Eurographics Association.
  7. Kockentiedt, S., Tönnies, K., Gierke, E., Dziurowitz, N., Thim, C., and Plitzko, S. (2013). Poisson shot noise parameter estimation from a single scanning electron microscopy image. In Egiazarian, K. O., Agaian, S. S., and Gotchev, A. P., editors, Proc. SPIE 8655, Image Processing: Algorithms and Systems XI, volume 8655, pages 86550N-86550N-13.
  8. Kubat, M., Holte, R. C., and Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30(2-3):195-215.
  9. Laghari, M. S. (2003). Recognition of texture types of wear particles. Neural Computing & Applications, 12(1):18-25.
  10. Langford, M., Taylor, G., and Flenley, J. (1990). Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology, 64(1- 4):197-203.
  11. Oleshko, V. P., Kindratenko, V. V., Gijbels, R. H., Van Espen, P. J. M., and Jacob, W. A. (1996). Study of quasi-fractal many-particle-systems and percolation networks by zero-loss spectroscopic imaging, electron energy-loss spectroscopy and digital image analysis. Mikrochimica Acta Supplement, 13:443-451.
  12. Oster, T. (2010). Erkennung von Nanofaseragglomeraten in REM-Bildern auf Basis von Texturinformationen. Bachelor thesis, Otto-von-Guericke University of Magdeburg.
  13. Ostrowski, A. D., Martin, T., Conti, J., Hurt, I., and Herr Harthorn, B. (2009). Nanotoxicology: Characterizing the scientific literature, 2000-2007. Journal of Nanoparticle Research, 11(2):251-257.
  14. Rodriguez-Damian, M., Cernadas, E., Formella, A., and Fernandez-Delgado, M. (2006). Automatic detection and classification of grains of pollen based on shape and texture. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(4):531-542.
  15. Rosin, P. L. (2001). Unimodal thresholding. Pattern Recognition, 34(11):2083-2096.
  16. Savolainen, K., Alenius, H., Norppa, H., Pylkkänen, L., Tuomi, T., and Kasper, G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies: A review. Toxicology, 269(2-3):92-104.
  17. Stachowiak, G. P., Podsiadlo, P., and Stachowiak, G. W. (2005). A comparison of texture feature extraction methods for machine condition monitoring and failure analysis. Tribology Letters, 20(2):133-147.
  18. Stachowiak, G. P., Stachowiak, G. W., and Podsiadlo, P. (2008). Automated classification of wear particles based on their surface texture and shape features. Tribology International, 41(1):34-43.
  19. Sun, Y., Wong, A. K., and Kamel, M. S. (2009). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4):687-719.
  20. Zack, G. W., Rogers, W. E., and Latt, S. A. (1977). Automatic measurement of sister chromatid exchange frequency. Journal of Histochemistry & Cytochemistry, 25(7):741-753.
Download


Paper Citation


in Harvard Style

Kockentiedt S., Tönnies K., Gierke E., Dziurowitz N., Thim C. and Plitzko S. (2015). Improved Automatic Recognition of Engineered Nanoparticles in Scanning Electron Microscopy Images . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 337-344. DOI: 10.5220/0005299003370344


in Bibtex Style

@conference{visapp15,
author={Stephen Kockentiedt and Klaus Tönnies and Erhardt Gierke and Nico Dziurowitz and Carmen Thim and Sabine Plitzko},
title={Improved Automatic Recognition of Engineered Nanoparticles in Scanning Electron Microscopy Images},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={337-344},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005299003370344},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Improved Automatic Recognition of Engineered Nanoparticles in Scanning Electron Microscopy Images
SN - 978-989-758-090-1
AU - Kockentiedt S.
AU - Tönnies K.
AU - Gierke E.
AU - Dziurowitz N.
AU - Thim C.
AU - Plitzko S.
PY - 2015
SP - 337
EP - 344
DO - 10.5220/0005299003370344