Analyzing the Effect of Lossy Compression on Particle Traces in Turbulent Vector Fields

Marc Treib, Kai Bürger, Jun Wu, Rüdiger Westermann

2015

Abstract

We shed light on the accuracy of particle trajectories in turbulent vector fields when lossy data compression is used. So far, data compression has been considered rather hesitantly due to supposed accuracy issues. Motivated by the observation that particle traces are always afflicted with inaccuracy, we quantitatively analyze the additional inaccuracies caused by lossy compression. In some experiments we confirm that the compression has only minor impact on the accuracy of the trajectories. Even though our experiments are not generally valid, they indicate that a more thorough analysis of the error in particle integration due to compression is necessary, and that in some cases lossy compression is valid and can significantly reduce performance limitations due to memory and communication bandwidth.

References

  1. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A. (1997). Predictability in the large: an extension of the concept of Lyapunov exponent. J. Physics A: Mathematical and General, 30(1):1-26.
  2. Balachandar, S. and Maxey, M. R. (1989). Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Computational Physics, 83(1):96-125.
  3. Balsa Rodriguez, M., Gobbetti, E., Iglesias Guitián, J., Makhinya, M., Marton, F., Pajarola, R., and Suter, S. (2013). A survey of compressed GPU-based direct volume rendering. In Eurographics 2013 - STARs, pages 117-136.
  4. Bruckschen, R., Kuester, F., Hamann, B., and Joy, K. I. (2001). Real-time out-of-core visualization of particle traces. In Proc. IEEE 2001 Symp. on Parallel and Large-Data Visualization and Graphics, pages 45-50.
  5. Camp, D., Garth, C., Childs, H., Pugmire, D., and Joy, K. (2011). Streamline integration using MPI-hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graphics, 17(11):1702-1713.
  6. Dormand, J. R. and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. J. Computational and Applied Mathematics, 6(1):19-26.
  7. Eiter, T. and Mannila, H. (1994). Computing discrete Frèchet distance. Technical Report CD-TR 94/64, Technische Universität Wien.
  8. Ellsworth, D., Green, B., and Moran, P. (2004). Interactive terascale particle visualization. In IEEE Visualization, pages 353-360.
  9. Fout, N. and Ma, K.-L. (2012). An adaptive predictionbased approach to lossless compression of floatingpoint volume data. IEEE Trans. Vis. Comput. Graphics, 18(12):2295-2304.
  10. Fout, N. and Ma, K.-L. (2013). Fuzzy volume rendering. IEEE Trans. Vis. Comput. Graphics, 18(12):2335- 2344.
  11. Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proc. IEEE, 93(2):216-231.
  12. Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005). Lossless compression of predicted floating-point geometry. Computer Aided Design, 37(8):869-877.
  13. Lane, D. A. (1994). UFAT-a particle tracer for timedependent flow fields. In IEEE Visualization, pages 257-264.
  14. Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F. H., and Weiskopf, D. (2004). The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum, 23(2):203-221.
  15. Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., and Eyink, G. (2008). A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbulence, 9:N31.
  16. Lindstrom, P. and Isenburg, M. (2006). Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graphics, 12(5):1245-1250.
  17. McLoughlin, T., Laramee, R. S., Peikert, R., Post, F. H., and Chen, M. (2010). Over two decades of integrationbased, geometric flow visualization. Computer Graphics Forum, 29(6):1807-1829.
  18. Nouanesengsy, B., Lee, T.-Y., and Shen, H.-W. (2011). Load-balanced parallel streamline generation on large scale vector fields. IEEE Trans. Vis. Comput. Graphics, 17(12):1785-1794.
  19. Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.-Y., Shen, H.-W., Kendall, W., and Huang, J. (2011). A study of parallel particle tracing for steady-state and timevarying flow fields. In Parallel Distributed Processing Symposium (IPDPS), pages 580-591.
  20. Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H. (2003). The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum, 22(4):775-792.
  21. Pugmire, D., Childs, H., Garth, C., Ahern, S., and Weber, G. H. (2009). Scalable computation of streamlines on very large datasets. In Proc. Conf. on High Performance Computing, Networking, Storage and Analysis, pages 16:1-16:12.
  22. Rovelstad, A. L., Handler, R. A., and Bernard, P. S. (1994). The effect of interpolation errors on the Lagrangian analysis of simulated turbulent channel flow. J. Computational Physics, 110(1):190-195.
  23. Sayood, K. (2005). Introduction to Data Compression. Morgan Kaufmann Publ. Inc., 3rd edition.
  24. Teitzel, C., Grosso, R., and Ertl, T. (1997). Efficient and reliable integration methods for particle tracing in unsteady flows on discrete meshes. In Visualization in Scientific Computing, pages 31-41.
  25. Treib, M., Bürger, K., Reichl, F., Meneveau, C., Szalay, A., and Westermann, R. (2012). Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput. Graphics, 18(12):2169-2177.
  26. Yeung, P. K. and Pope, S. B. (1988). An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Computational Physics, 79(2):373-416.
  27. Yu, H., Wang, C., and Ma, K.-L. (2007). Parallel hierarchical visualization of large time-varying 3D vector fields. In Proc. ACM/IEEE Conf. on Supercomputing, pages 24:1-24:12.
  28. Zheng, Z., Xu, W., and Mueller, K. (2010). VDVR: Verifiable volume visualization of projection-based data. IEEE Trans. Vis. Comput. Graphics, 16(6):1515- 1524.
Download


Paper Citation


in Harvard Style

Treib M., Bürger K., Wu J. and Westermann R. (2015). Analyzing the Effect of Lossy Compression on Particle Traces in Turbulent Vector Fields . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 279-288. DOI: 10.5220/0005307202790288


in Bibtex Style

@conference{ivapp15,
author={Marc Treib and Kai Bürger and Jun Wu and Rüdiger Westermann},
title={Analyzing the Effect of Lossy Compression on Particle Traces in Turbulent Vector Fields},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},
year={2015},
pages={279-288},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005307202790288},
isbn={978-989-758-088-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - Analyzing the Effect of Lossy Compression on Particle Traces in Turbulent Vector Fields
SN - 978-989-758-088-8
AU - Treib M.
AU - Bürger K.
AU - Wu J.
AU - Westermann R.
PY - 2015
SP - 279
EP - 288
DO - 10.5220/0005307202790288