Color Dog - Guiding the Global Illumination Estimation to Better Accuracy

Nikola Banic, Sven Loncaric

2015

Abstract

An important part of image enhancement is color constancy, which aims to make image colors invariant to illumination. In this paper the Color Dog (CD), a new learning-based global color constancy method is proposed. Instead of providing one, it corrects the other methods’ illumination estimations by reducing their scattering in the chromaticity space by using a its previously learning partition. The proposed method outperforms all other methods on most high-quality benchmark datasets. The results are presented and discussed.

References

  1. A. Gijsenij, T. G. and van de Weijer, J. (2014). Color Constancy - Research Website on Illuminant Estimation.
  2. Banic, N. and Lonc?aric, S. (2013). Using the Random Sprays Retinex Algorithm for Global Illumination Estimation. In Proceedings of The Second Croatian Computer Vision Workshop (CCVW 2013), pages 3-7. University of Zagreb Faculty of Electrical Engineering and Computing.
  3. Banic, N. and Lonc?aric, S. (2014a). Color Rabbit: Guiding the Distance of Local Maximums in Illumination Estimation. In Digital Signal Processing (DSP), 2014 19th International Conference on, pages 345- 350. IEEE.
  4. Banic, N. and Lonc?aric, S. (2014b). Improving the White patch method by subsampling. In Image Processing (ICIP), 2014 21st IEEE International Conference on, pages 605-609. IEEE.
  5. Banic, N. and Lonc?aric, S. (2015). Color Cat: Remembering Colors for Illumination Estimation. Signal Processing Letters, IEEE, 22(6):651-655.
  6. Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of The Franklin Institute, 310(1):1-26.
  7. Cardei, V. C., Funt, B., and Barnard, K. (2002). Estimating the scene illumination chromaticity by using a neural network. Journal of the Optical Society of America A, 19(12):2374-2386.
  8. Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color constancy with spatio-spectral statistics. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(8):1509-1519.
  9. Cheng, D., Prasad, D., and Brown, M. S. (2014a). On Illuminant Detection.
  10. Cheng, D., Prasad, D. K., and Brown, M. S. (2014b). Illuminant estimation for color constancy: why spatialdomain methods work and the role of the color distribution. Journal of the Optical Society of America A, 31(5):1049-1058.
  11. Ciurea, F. and Funt, B. (2003). A large image database for color constancy research. In Color and Imaging Conference, volume 2003, pages 160-164. Society for Imaging Science and Technology.
  12. Deng, Z., Gijsenij, A., and Zhang, J. (2011). Source camera identification using Auto-White Balance approximation. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 57-64. IEEE.
  13. Ebner, M. (2007). Color Constancy. The Wiley-IS&T Series in Imaging Science and Technology. Wiley.
  14. Finlayson, G. D., Hordley, S. D., and Morovic, P. (2005). Colour constancy using the chromagenic constraint. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 1079-1086. IEEE.
  15. Finlayson, G. D., Hordley, S. D., and Tastl, I. (2006). Gamut constrained illuminant estimation. International Journal of Computer Vision, 67(1):93-109.
  16. Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and colour constancy. In Color and Imaging Conference, volume 2004, pages 37-41. Society for Imaging Science and Technology.
  17. Fredembach, C. and Finlayson, G. (2008). Bright chromagenic algorithm for illuminant estimation. Journal of Imaging Science and Technology, 52(4):40906-1.
  18. Funt, B. and Shi, L. (2010). The rehabilitation of MaxRGB. In Color and Imaging Conference, volume 2010, pages 256-259. Society for Imaging Science and Technology.
  19. Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T. (2008). Bayesian color constancy revisited. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE.
  20. Gijsenij, A. and Gevers, T. (2007). Color Constancy using Natural Image Statistics. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.
  21. Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011). Computational color constancy: Survey and experiments. Image Processing, IEEE Transactions on, 20(9):2475-2489.
  22. Gijsenij, A., Gevers, T., and Van De Weijer, J. (2012). Improving color constancy by photometric edge weighting. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(5):918-929.
  23. Hordley, S. D. and Finlayson, G. D. (2004). Re-evaluating colour constancy algorithms. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 1, pages 76-79. IEEE.
  24. Japkowicz, N. and Shah, M. (2011). Evaluating Learning Algorithms. Cambridge University Press.
  25. Joze, H. R. V. and Drew, M. S. (2012). Exemplar-Based Colour Constancy. In British Machine Vision Conference, pages 1-12.
  26. Joze, H. R. V., Drew, M. S., Finlayson, G. D., and Rey, P. A. T. (2012). The Role of Bright Pixels in Illumination Estimation. In Color and Imaging Conference, volume 2012, pages 41-46. Society for Imaging Science and Technology.
  27. L. Shi, B. F. (2014). Re-processed Version of the Gehler Color Constancy Dataset of 568 Images.
  28. Land, E. H. (1977). The retinex theory of color vision. Scientific America.
  29. Lynch, S. E., Drew, M. S., and Finlayson, k. G. D. (2013). Colour Constancy from Both Sides of the Shadow Edge. In Color and Photometry in Computer Vision Workshop at the International Conference on Computer Vision. IEEE.
  30. Van De Weijer, J., Gevers, T., and Gijsenij, A. (2007a). Edge-based color constancy. Image Processing, IEEE Transactions on, 16(9):2207-2214.
  31. Van De Weijer, J., Schmid, C., and Verbeek, J. (2007b). Using high-level visual information for color constancy. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1-8. IEEE.
  32. Vassilvitskii, S. and University, S. (2007). K-means: Algorithms, Analyses, Experiments. Stanford University.
  33. Zhang, B. and Batur, A. (2014). Illumination Estimation Using Natural Scene Statistics. US Patent App. 14/188,670.
Download


Paper Citation


in Harvard Style

Banic N. and Loncaric S. (2015). Color Dog - Guiding the Global Illumination Estimation to Better Accuracy . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 129-135. DOI: 10.5220/0005307401290135


in Bibtex Style

@conference{visapp15,
author={Nikola Banic and Sven Loncaric},
title={Color Dog - Guiding the Global Illumination Estimation to Better Accuracy},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={129-135},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005307401290135},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Color Dog - Guiding the Global Illumination Estimation to Better Accuracy
SN - 978-989-758-089-5
AU - Banic N.
AU - Loncaric S.
PY - 2015
SP - 129
EP - 135
DO - 10.5220/0005307401290135