Video Segmentation via a Gaussian Switch Background Model and Higher Order Markov Random Fields

Martin Radolko, Enrico Gutzeit

2015

Abstract

Foreground-background segmentation in videos is an important low-level task needed for many different applications in computer vision. Therefore, a great variety of different algorithms have been proposed to deal with this problem, however none can deliver satisfactory results in all circumstances. Our approach combines an efficent novel Background Substraction algorithm with a higher order Markov Random Field (MRF) which can model the spatial relations between the pixels of an image far better than a simple pairwise MRF used in most of the state of the art methods. Afterwards, a runtime optimized Belief Propagation algorithm is used to compute an enhanced segmentation based on this model. Lastly, a local between Class Variance method is combined with this to enrich the data from the Background Substraction. To evaluate the results the difficult Wallflower data set is used.

References

  1. Boykov, Y. and Funka-Lea, G. (2006). Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision, 70:109-131.
  2. Bucak, S., Gunsel, B., and Guersoy, O. (2007). Incremental nonnegative matrix factorization for background modeling in surveillance video. In Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th, pages 1-4.
  3. Bucak, S. S. and Gunsel, B. (2009). Incremental subspace learning via non-negative matrix factorization. Pattern Recogn., 42(5):788-797.
  4. Cinar, G. and Principe, J. (2011). Adaptive background estimation using an information theoretic cost for hidden state estimation. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 489- 494.
  5. Elgammal, A. M., Harwood, D., and Davis, L. S. (2000). Non-parametric model for background subtraction. In Proceedings of the 6th European Conference on Computer Vision-Part II, ECCV 7800, pages 751-767, London, UK, UK. Springer-Verlag.
  6. Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient belief propagation for early vision. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pages I-261-I-268 Vol.1.
  7. Huang, D.-Y., Lin, T.-W., and Hu, W. C. (2001). Automatic multilevel thresholding based on two-stage otsu's method with cluster determination by valley estimation. Journal of Information Science and Engineering, 17:713-727.
  8. Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31(1):253-258.
  9. Kim, T.-K., Wong, K.-Y. K., Stenger, B., Kittler, J., and Cipolla, R. (2007). Incremental linear discriminant analysis using sufficient spanning set approximations. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
  10. Li, X., Hu, W., Zhang, Z., and Zhang, X. (2008). Robust foreground segmentation based on two effective background models. In Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, MIR 7808, pages 223-228.
  11. Liao, sheng Chen, T., and choo Chung, P. (2011). A fast algorithm for multilevel thresholding. International Journal of Innovative Computing, Information and Control, 7(10):5631-5644.
  12. Lin, H.-H., Liu, T.-L., and Chuang, J.-H. (2002). A probabilistic svm approach for background scene initialization. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 3, pages 893- 896 vol.3.
  13. Marghes, T., B., and R., V. (2012). Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach. In Proceedings of the 2012 International Conferecne on Image Processing, Computer Vision and Patternrecognition, pages 106-113.
  14. Otsu, N. (1979). A threshold selection method from graylevel histograms. Systems, Man and Cybernetics,IEEE Transactions on, 9(1):62-66.
  15. Schindler, K. and Wang, H. (2006). Smooth foregroundbackground segmentation for video processing. In Proceedings of the 7th Asian Conference on Computer Vision - Volume Part II, ACCV'06, pages 581-590.
  16. Setiawan, N. A., Seok-Ju, H., Jang-Woon, K., and ChilWoo, L. (2006). Gaussian mixture model in improved hls color space for human silhouette extraction. In Proceedings of the 16th International Conference on Advances in Artificial Reality and TeleExistence, ICAT'06, pages 732-741.
  17. Stauffer, C. and Grimson, W. (1999). Adaptive background mixture models for real-time tracking. In Proceedings 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. Two, pages 246-252. IEEE Computer Society Press.
  18. Sun, M., Telaprolu, M., Lee, H., and Savarese, S. (2012). Efficient and exact map-mrf inference using branch and bound. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS-12), volume 22, pages 1134-1142.
  19. Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999). Wallflower: Principles and practice of background maintenance. In Seventh International Conference on Computer Vision, pages 255-261. IEEE Computer Society Press.
  20. Tsai, D. and Lai, C. (2009). Independent component analysis-based background subtraction for indoor surveillance. In IEEE Trans Image Proc IP 2009, volume 18, pages 158-167.
  21. Viola, P. and Jones, M. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
  22. White, B. and Shah, M. (2007). Automatically tuning background subtraction parameters using particle swarm optimization. In Multimedia and Expo, 2007 IEEE International Conference on, pages 1826-1829.
  23. Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A. (1997). Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:780-785.
  24. Xu, W., Zhou, Y., Gong, Y., and Tao, H. (2005). Background modeling using time dependent markov random field with image pyramid. In Proceedings of the IEEE Workshop on Motion and Video Computing (WACV/MOTION'05) - Volume 2 - Volume 02.
  25. Y. Wang, K.-F. L. and Wu, J.-K. (2006). A dynamic conditional random field model for foreground and shadow segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 28:279-289.
  26. Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2003). Exploring artificial intelligence in the new millennium. chapter Understanding Belief Propagation and Its Generalizations, pages 239-269.
  27. Zhang, S., Yao, H., and Liu, S. (2009). Dynamic background subtraction based on local dependency histogram. International Journal of Pattern Recognition and Artificial Intelligence, 23(07):1397-1419.
Download


Paper Citation


in Harvard Style

Radolko M. and Gutzeit E. (2015). Video Segmentation via a Gaussian Switch Background Model and Higher Order Markov Random Fields . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 537-544. DOI: 10.5220/0005308505370544


in Bibtex Style

@conference{visapp15,
author={Martin Radolko and Enrico Gutzeit},
title={Video Segmentation via a Gaussian Switch Background Model and Higher Order Markov Random Fields},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={537-544},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005308505370544},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Video Segmentation via a Gaussian Switch Background Model and Higher Order Markov Random Fields
SN - 978-989-758-089-5
AU - Radolko M.
AU - Gutzeit E.
PY - 2015
SP - 537
EP - 544
DO - 10.5220/0005308505370544