Local Changes in Marching Cubes to Generate Less Degenerated Triangles

Thiago F. Leal, Aruquia B. M. Peixoto, Cassia I. G. Silva, Marcelo de A. Dreux, Carlos A. de Moura

2015

Abstract

The Marching Cubes algorithm is widely used to generate surfaces from implicit functions. It builds a mesh of triangles but many degenerated ones happen to appear among them, which can make the mesh thus built unfit for many applications, like the Finite Element Method. To overcome this undesired behavior our work proposes changes on the triangle generation that are automatically generated by Marching Cubes inside each voxel. We first generate the polygon border inside each voxel that intersects the surface. Each polygon is tested so as to guarantee the need to insert a new vertex inside itself, the triangles being then generated according to each polygon properties in order to guarantee the best ratio between their sides and angles. The resulting triangles inside each voxel exhibit the best possible ratio between their dimensions, thus leading to a better mesh.

References

  1. Dietrich C. A., Scheidegger C., Comba J. L. D., Nedel L.P., Silva C. T., 2009, Marching cubes without skinny triangles, Computing In Science & Engineering, Vol. 11, No. 2. pp 82-87.
  2. Chernyaev, E. V., 1995. Marching Cubes 33: Construction of Topologically Correct Isosurfaces, Technical Report CERN CN 95-17, CERN.
  3. Gibson, S. F. F., 1998, Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data, Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI, pp. 888- 898.
  4. Ju, T., Losasso, F., Schaefer, S., Warren, J., 2002, Dual Contouring of Hermite Data, Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2002. Pp. 339- 346.
  5. Kobbelt, L. P., Botsch, M., Schwanecke, U., Seidel, H-P., 2001, Feature Sensitive Surface Extraction from Volume Data, Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001. pp 57-66.
  6. Lorensen, W. E., Cline, H. E., 1987. Marching cubes: A high resolution 3D surface construction algorithm, Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp.163- 169.
  7. Martinez, D., Velho, L., Carvalho, P. C., 2005, Computing Geodesics on Triangular Meshes. Computers & Graphics v. 29, n.5, p. 667-675.
  8. Nielson, G. M., Hamann, B., 1991. The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes, Proceedings of the 20 Conference on Visualization 7891, VIS 91, pp. 83-91, IEEE Computer Society Press.
  9. Nielson, G. M., 2004, Dual Marching Cubes, Proceedings of the Conference on Visualization 2004, VIS 2004. Pp. 489-496.
  10. Peixoto, A. B. M., Moura, C. de, 2014, Topology Preserving Algorithms for Implicit Surfaces Simplifying and Sewing, Proceedings of 14th International Computational Science and Its Applications - ICCSA. pp. 352-367.
  11. Schaefer, S., Ju, T., Warren, J., 2007, Manifold Dual Contouring, IEEE Transactions on Visualization and Computer Graphics. Pp. 610-619.
  12. Shewchuk, J. R., 2002, What Is a Good Linear Finite Element? - Interpolation, Conditioning, Anisotropy, and Quality Measures. In Proc. of the 11th International Meshing Roundtable, p. 115-126.
  13. Velho, L, Figueiredo, L. H., Gomes, J, 2002, Implicit Objects in Computer Graphics, Springer.
  14. Wenger, A., 2005, Isosurfaces: Geometry, Topology, and Algorithms, Taylor & Francis.
  15. Zomorodian, R., 2005, Topology for Computing, Cambridge: Cambridge University Press.
Download


Paper Citation


in Harvard Style

F. Leal T., B. M. Peixoto A., I. G. Silva C., de A. Dreux M. and A. de Moura C. (2015). Local Changes in Marching Cubes to Generate Less Degenerated Triangles . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 143-149. DOI: 10.5220/0005309201430149


in Bibtex Style

@conference{grapp15,
author={Thiago F. Leal and Aruquia B. M. Peixoto and Cassia I. G. Silva and Marcelo de A. Dreux and Carlos A. de Moura},
title={Local Changes in Marching Cubes to Generate Less Degenerated Triangles},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},
year={2015},
pages={143-149},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005309201430149},
isbn={978-989-758-087-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - Local Changes in Marching Cubes to Generate Less Degenerated Triangles
SN - 978-989-758-087-1
AU - F. Leal T.
AU - B. M. Peixoto A.
AU - I. G. Silva C.
AU - de A. Dreux M.
AU - A. de Moura C.
PY - 2015
SP - 143
EP - 149
DO - 10.5220/0005309201430149