CORE: A COnfusion REduction Algorithm for Keypoints Filtering

Emilien Royer, Thibault Lelore, Frédéric Bouchara

2015

Abstract

In computer vision, extracting keypoints and computing associated features is the first step for many applications such as object recognition, image indexation, super-resolution or stereo-vision. In many cases, in order to achieve good results, pre or post-processing are almost mandatory steps. In this paper, we propose a generic pre-filtering method for floating point based descriptors which address the confusion problem due to repetitive patterns. We sort keypoints by their unicity without taking into account any visual element but the feature vectors’s statistical properties thanks to a kernel density estimation approach. Even if highly reduced in number, results show that keypoints subsets extracted are still relevant and our algorithm can be combined with classical post-processing methods.

References

  1. , Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust independent elementary features. In Computer Vision ECCV 2010, volume 6314 of Lecture Notes in Computer Science, pages 778-792. Springer Berlin Heidelberg.
  2. Deriche, R., Zhang, Z., Luong, Q.-T., and Faugeras, O. (1994). Robust recovery of the epipolar geometry for an uncalibrated stereo rig. In Proceedings of the Third European Conference on Computer Vision (Vol. 1), ECCV 7894, pages 567-576, Secaucus, NJ, USA. Springer-Verlag New York, Inc.
  3. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
  4. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In In Proc. of Fourth Alvey Vision Conference, pages 147-151.
  5. Jiang, N., Tan, P., and Cheong, L. F. (2011). Multi-view repetitive structure detection. In ICCV, pages 535- 542. IEEE.
  6. Lee, S., Collins, R., and Liu, Y. (2008). Rotation symmetry group detection via frequency analysis of friezeexpansions. In Proceedings of CVPR 2008.
  7. Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, ICCV 7811, pages 2548-2555, Washington, DC, USA. IEEE Computer Society.
  8. Li, X. and Hu, Z. (2010). Rejecting mismatches by correspondence function. Int. J. Comput. Vision, 89(1):1- 17.
  9. Liu, Y., Collins, R., and Tsin, Y. (2004). A computational model for periodic pattern perception based on frieze and wallpaper groups. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(3):354-371.
  10. Lowe, D. (1999). Object recognition from local scaleinvariant features. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages 1150-1157 vol.2.
  11. Loy, G. and Eklundh, J.-O. (2006). Detecting symmetry and symmetric constellations of features. In Proceedings of the 9th European Conference on Computer Vision - Volume Part II, ECCV'06, pages 508-521, Berlin, Heidelberg. Springer-Verlag.
  12. Ma, J., Zhao, J., Tian, J., Yuille, A. L., and Tu, Z. (2014). Robust point matching via vector field consensus. IEEE Transactions on Image Processing, 23(4):1706- 1721.
  13. Martins, P., Carvalho, P., and Gatta, C. (2012). Context aware keypoint extraction for robust image representation. In Proceedings of the British Machine Vision Conference, pages 100.1-100.12. BMVA Press.
  14. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615-1630.
  15. Mok, S. J., Jung, K., Ko, D. W., Lee, S. H., and Choi, B.-U. (2011). Serp: Surf enhancer for repeated pattern. In Proceedings of the 7th International Conference on Advances in Visual Computing - Volume Part II, ISVC'11, pages 578-587, Berlin, Heidelberg. Springer-Verlag.
  16. Morel, J.-M. and Yu, G. (2009). Asift: A new framework for fully affine invariant image comparison. SIAM J. Img. Sci., 2(2):438-469.
  17. Mortensen, E. N., Deng, H., and Shapiro, L. (2005). A sift descriptor with global context. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01, CVPR 7805, pages 184-190, Washington, DC, USA. IEEE Computer Society.
  18. Ortiz, R. (2012). Freak: Fast retina keypoint. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR 7812, pages 510-517, Washington, DC, USA. IEEE Computer Society.
  19. Pang, S., Xue, J., Tian, Q., and Zheng, N. (2014). Exploiting local linear geometric structure for identifying correct matches. Computer Vision and Image Understanding, 128(0):51 - 64.
  20. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):pp. 1065-1076.
  21. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. J. (2008). Discovering structural regularity in 3d geometry. In ACM SIGGRAPH 2008 Papers, SIGGRAPH 7808, pages 43:1-43:11, New York, NY, USA. ACM.
  22. Rabin, J., Gousseau, Y., and Delon, J. (2007). A contrario matching of local descriptors.
  23. Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In European Conference on Computer Vision, volume 1, pages 430-443.
  24. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient alternative to sift or surf. In Proceedings of the 2011 International Conference on Computer Vision, ICCV 7811, pages 2564-2571, Washington, DC, USA. IEEE Computer Society.
  25. Sattler, T., Leibe, B., and Kobbelt, L. (2009). Scramsac: Improving ransac's efficiency with a spatial consistency filter. In ICCV, pages 2090-2097. IEEE.
  26. Shao, T. S. H. and Gool, L. V. (2003). Zubud-zurich buildings database for image based recognition, technical report no. 260.
  27. T. Trzcinski, M. C. and Lepetit, V. (2013). Learning Image Descriptors with Boosting. submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).
  28. Torr, P. H. S. and Murray, D. W. (1995). Outlier detection and motion segmentation. pages 432-443.
  29. Torr, P. H. S. and Zisserman, A. (2000). Mlesac: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst., 78(1):138- 156.
  30. Trzcinski, T. and Lepetit, V. (2012). Efficient Discriminative Projections for Compact Binary Descriptors. In European Conference on Computer Vision.
  31. C. (2007). SiftGPU: A GPU implementation of scale invariant feature transform (SIFT).
  32. Zhao, J., Ma, J., Tian, J., Ma, J., and Zhang, D. (2011). A robust method for vector field learning with application to mismatch removing. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2977-2984.
Download


Paper Citation


in Harvard Style

Royer E., Lelore T. and Bouchara F. (2015). CORE: A COnfusion REduction Algorithm for Keypoints Filtering . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 561-568. DOI: 10.5220/0005309405610568


in Bibtex Style

@conference{visapp15,
author={Emilien Royer and Thibault Lelore and Frédéric Bouchara},
title={CORE: A COnfusion REduction Algorithm for Keypoints Filtering},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={561-568},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005309405610568},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - CORE: A COnfusion REduction Algorithm for Keypoints Filtering
SN - 978-989-758-089-5
AU - Royer E.
AU - Lelore T.
AU - Bouchara F.
PY - 2015
SP - 561
EP - 568
DO - 10.5220/0005309405610568