MAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models

Saikat Basu, Manohar Karki, Malcolm Stagg, Robert DiBiano, Sangram Ganguly, Supratik Mukhopadhyay

2015

Abstract

In this paper, we present MAPTrack - a robust tracking framework that uses a probabilistic scheme to combine a motion model of an object with that of its appearance and an estimation of its position. The motion of the object is modelled using the Gaussian Mixture Background Subtraction algorithm, the appearance of the tracked object is enumerated using a color histogram and the projected location of the tracked object in the image space/frame sequence is computed by applying a Gaussian to the Region of Interest. Our tracking framework is robust to abrupt changes in lighting conditions, can follow an object through occlusions, and can simultaneously track multiple moving foreground objects of different types (e.g., vehicles, human, etc.) even when they are closely spaced. It is able to start tracks automatically based on a spatio-temporal filtering algorithm. A "dynamic" integration of the framework with optical flow allows us to track videos resulting from significant camera motion. A C++ implementation of the framework has outperformed existing visual tracking algorithms on most videos in the Video Image Retrieval and Analysis Tool (VIRAT), TUD, and the Tracking-Learning-Detection (TLD) datasets.

References

  1. Andriluka, M., Roth, S., & Schiele, B. (2008, June). People-tracking-by-detection and people-detection-bytracking. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on (pp. 1-8). IEEE.
  2. Babenko, B., Yang, M. H., & Belongie, S. (2009, June). Visual tracking with online multiple instance learning. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 983-990). IEEE.
  3. Chang, C., & Ansari, R. (2005). Kernel particle filter for visual tracking. Signal processing letters, IEEE, 12(3), 242-245.
  4. Hager, G. D., & Belhumeur, P. N. (1998). Efficient region tracking with parametric models of geometry and illumination. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(10), 1025- 1039.
  5. Kalal, Z., Matas, J., & Mikolajczyk, K. (2010, June). Pn learning: Bootstrapping binary classifiers by structural constraints. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on (pp. 49-56). IEEE.
  6. KaewTraKulPong, P., & Bowden, R. (2002). An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-Based Surveillance Systems (pp. 135-144). Springer US.
  7. Lan, X., & Huttenlocher, D. P. (2004, July). A unified spatio-temporal articulated model for tracking. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on (Vol. 1, pp. I-722). IEEE.
  8. Lombardi, P., & Versino, C. (2011). Learning to Detect Event Sequences in Surveillance Streams at Very Low Frame Rate. In Machine Learning for Vision-Based Motion Analysis (pp. 117-144). Springer London.
  9. Lucas, B. D., & Kanade, T. (1981, August). An iterative image registration technique with an application to stereo vision. In IJCAI (Vol. 81, pp. 674-679).
  10. Maggio, E., & Cavallaro, A. (2005, March). Hybrid Particle Filter and Mean Shift tracker with adaptive transition model. In ICASSP (2) (pp. 221-224).
  11. Moreno-Noguer, F., Sanfeliu, A., & Samaras, D. (2008). Dependent multiple cue integration for robust tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(4), 670-685.
  12. Oltramari, A., & Lebiere, C. (2012). Using ontologies in a cognitive-grounded system: automatic action recognition in video surveillance. In Proceedings of the 7th international conference on semantic technology for intelligence, defense, and security, Fairfax.
  13. Shi, J., & Tomasi, C. (1994, June). Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on (pp. 593-600). IEEE.
  14. Smith, K., Gatica-Perez, D., Odobez, J. M., & Ba, S. (2005, June). Evaluating multi-object tracking. In Computer Vision and Pattern RecognitionWorkshops, 2005. CVPR Workshops. IEEE Computer Society Conference on (pp. 36-36). IEEE.
  15. Tao, H., Sawhney, H. S., & Kumar, R. (2002). Object tracking with bayesian estimation of dynamic layer representations. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(1), 75-89.
  16. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-511). IEEE.
  17. Williams, O., Blake, A., & Cipolla, R. (2003, October). A sparse probabilistic learning algorithm for real-time tracking. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on (pp. 353- 360). IEEE.
Download


Paper Citation


in Harvard Style

Basu S., Karki M., Stagg M., DiBiano R., Ganguly S. and Mukhopadhyay S. (2015). MAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 567-574. DOI: 10.5220/0005309805670574


in Bibtex Style

@conference{visapp15,
author={Saikat Basu and Manohar Karki and Malcolm Stagg and Robert DiBiano and Sangram Ganguly and Supratik Mukhopadhyay},
title={MAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={567-574},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005309805670574},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - MAPTrack - A Probabilistic Real Time Tracking Framework by Integrating Motion, Appearance and Position Models
SN - 978-989-758-091-8
AU - Basu S.
AU - Karki M.
AU - Stagg M.
AU - DiBiano R.
AU - Ganguly S.
AU - Mukhopadhyay S.
PY - 2015
SP - 567
EP - 574
DO - 10.5220/0005309805670574