A Measure of Texture Directionality
Manil Maskey, Timothy Newman
2015
Abstract
Determining the directionality (i.e., orientedness) of textures is considered here. The work has three major components. The first component is a new method that indicates if a texture is directional or not. The new method considers both local and global aspects of a texture’s directionality. Local pixel intensity differences provide most of the local aspect. A frequency domain analysis provides most of the global aspect. The second component is a comparison study (based on the complete set of Brodatz textures) of the method versus the known, competing methods for determining texture directionality. The third component is a user study of the method’s utility.
References
- Abbadeni, N. (2000). Autocovariance-based perceptual textural features corresponding to human visual perception. In Proc., Int'l Conf. on Pattern Recognition 7800, volume 3, pages 901-904.
- Abbadeni, N., Zhou, D., and Wang, S. (2000). Computational measures corresponding to perceptual textural features. In Proc., Int'l Conf. on Image Processing 7800, volume 3, pages 897-900.
- Beck, J. (1982). Textural Segmentation, in Organization and Representation in Perception. Hillsdale, NY: Erlbaum.
- Blake, R. and Holopigan, K. (1985). Orientation selectivity in cats and humans assessed by masking. Vision Research, 25(10):1459-1467.
- Cao, F., Guichard, F., and Hornung, H. (2009). Measuring texture sharpness of a digital camera.
- Chetverikov., D. (1984). Measuring the degree of texture regularity. in proc. international conf. on pattern recognition. In Proc., International Conf. on Pattern Recognition, pages 80-82.
- Chetverikov, D. and Hanbury, A. (2002). Finding defects in texture using regularity and local orientation. Pattern Recognition, 35(10):2165-2180.
- Freeman, W. and Adelson, E. (1991). The design and use of steerable filters. IEEE Trans. Pattern Anal. and Machine Intel., 13(9):891-906.
- Gorkani, M. and Picard, R. (1994). Texture orientation for sorting photos ”at a glance”. In Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision amp; Image Processing., Proceedings of the 12th IAPR International Conference on, volume 1, pages 459-464 vol.1.
- Hagh-Shenas, H. and Interrante, V. (2005). A closer look at texture metrics. In Proc., 2nd Symp. on Applied Perception in Graphics and Vis. (APGV 7805), pages 176-176.
- Haralick, R. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786-804.
- Hawkins, J. K. (1970). Picture Processing and Psychopictorics. Academic Press, New York, NY, USA, as cited by W. K. Pratt, Digital Image Processing 2nd Ed., 1991, Wiley.
- Healey, C. and Enns, J. (1999). Large datasets at a glance: Combining textures and colors in scientific visualization. IEEE Trans. Vis. and Computer Graphics, 5(2):145-167.
- Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. Physiology, 195:215-243.
- Jackson, S. L. (2009). Research Methods and Statistics : A Critical Thinking Approach. Wadsworth Cengage Learning, Belmont, CA.
- Kekre, H., Thepade, S. D., Jain, J., and Agrawal, N. (2010). Article:iris recognition using texture features extracted from haarlet pyramid. International Journal of Computer Applications, 11(12):1-5. Published By Foundation of Computer Science.
- Manjunath, B., Ohm, J.-R., Vasudevan, V., and Yamada, A. (2001). Color and texture descriptors. Circuits and Systems for Video Technology, IEEE Transactions on, 11(6):703-715.
- Mudigonda, N. R., Rangayyan, R. M., and Desautels, J. L. (2001). Detection of breast masses in mammograms by density slicing and texture flow-field analysis. Medical Imaging, IEEE Transactions on, 20(12):1215-1227.
- Nothdurft, C. (1985). Sensitivity for structure gradient in texture discrimination tasks. Vision Research, 25:1957-1968.
- Nothdurft, C. (1990). Texton segregation by associated differences in global and local illuminance distribution. In Proc., R Soc Lond Ser B Biol Sci, pages 295-320.
- Nothdurft, C. (1991). Texture segmentation and pop-out from orientation contrast. Vision Research, 31:1073- 1078.
- Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971-987.
- Picard, R. and Gorkani, M. (1992). Finding perceptually dominant orientations in natural textures. Spatial Vision, 8(2):221-253.
- Saha, S., Das, A., and Chanda, B. (2004). Cbir using perception based texture and colour measures. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages 985-988 Vol.2.
- Shiranita, K., Miyajima, T., and Takiyama, R. (1998). Determination of meat quality by texture analysis. Pattern Recognition Letters, 19(14):1319 - 1324.
- Sikora, T. (2001). The mpeg-7 visual standard for content description-an overview. Circuits and Systems for Video Technology, IEEE Transactions on, 11(6):696- 702.
- Smith, J. and Chang, S.-F. (1996). Automated binary texture feature sets for image retrieval. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on, volume 4, pages 2239-2242 vol. 4.
- Tamura, H., Mori, S., and Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE Trans. Sys., Man and Cybernetics, 8(6):460-473.
- Ware, C. and Knight, W. (1992). Orderable dimensions of visual texture for data display: Orientation, size, and contrast. In Proc., ACM Conf. on Human Factors in Computing Sys. 7892, pages 203-209.
- Wu, P., Manjunanth, B., Newsam, S., and Shin, H. (1999). A texture descriptor for image retrieval and browsing. In Content-Based Access of Image and Video Libraries, 1999. (CBAIVL 7899) Proceedings. IEEE Workshop on, pages 3-7.
Paper Citation
in Harvard Style
Maskey M. and Newman T. (2015). A Measure of Texture Directionality . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 432-438. DOI: 10.5220/0005312904320438
in Bibtex Style
@conference{visapp15,
author={Manil Maskey and Timothy Newman},
title={A Measure of Texture Directionality},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={432-438},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005312904320438},
isbn={978-989-758-090-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - A Measure of Texture Directionality
SN - 978-989-758-090-1
AU - Maskey M.
AU - Newman T.
PY - 2015
SP - 432
EP - 438
DO - 10.5220/0005312904320438