A User-centric Taxonomy for Multidimensional Data Projection Tasks

Ronak Etemadpour, Lars Linsen, Christopher Crick, Angus Forbes

2015

Abstract

When investigating multidimensional data sets with very large numbers of objects and/or a very large number of dimensions, a variety of visualization methods can be employed in order to represent the data effectively and to enable the user to explore the data at different levels of detail. A common strategy for encoding multidimensional data for visual analysis is to use dimensionality reduction techniques that project data from higher dimensions onto a lower-dimensional space. In this paper, we focus on projection techniques that output 2D or 3D scatterplots which can then be used for a range of data analysis tasks. Existing taxonomies for multidimensional data projections focus primarily on tasks in order to evaluate the human perception of class or cluster separation and/or preservation. However, real-world data analysis of complex data sets often includes other tasks besides cluster separation, such as: cluster identification, similarity seeking, cluster ranking, comparisons, counting objects, etc. A contribution of this paper is the identification of subtasks grouped into four main categories of data analysis tasks. We believe that this user-centric task categorization can be used to guide the organization of multidimensional data projection layouts. Moreover, this taxonomy can be used as a guideline for visualization designers when faced with complex data sets requiring dimensionality reduction. Our taxonomy aims to help designers evaluate the effectiveness of a visualization system by providing an expanded range of relevant tasks. These tasks are gathered from an extensive study of visual analytics projects across real-world application domains, all of which involve multidimensional projection. In addition to our survey of tasks and the creation of the task taxonomy, we also explore in more detail specific examples of how to represent data sets effectively for particular tasks. These case studies, while not exhaustive, provide a framework for how specifically to reason about tasks and to decide on visualization methods. That is, we believe that this taxonomy will help visualization designers to determine which visualization methods are appropriate for specific multidimensional data projection tasks.

References

  1. Ahuja, N. and Tuceryan, M. (1989). Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt. Comput. Vision Graph. Image Process., 48(3):304-356.
  2. Albuquerque, G., Eisemann, M., and Magnor, M. (2011). Perception-based visual quality measures. In Proc. IEEE Symposium on Visual Analytics Science and Technology (VAST) 2011, pages 13-20.
  3. Amar, R., Eagan, J., and Stasko, J. (2005). Low-level components of analytic activity in information visualization. In Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, INFOVIS 7805, pages 15-, Washington, DC, USA. IEEE Computer Society.
  4. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., and Wrobel, S. (2011). A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput., 22(3):213-232.
  5. Andrienko, N. V., Andrienko, G. L., and Gatalsky, P. (2000). Visualization of spatio-temporal information in the internet. In 11th International Workshop on Database and Expert Systems Applications (DEXA'00), 6-8 September 2000, Greenwich, London, UK, pages 577-585.
  6. Borg, I. and Groenen, P. J. F. (2010). Modern Multidimensional Scaling Theory and Applications. Springer Series in Statistics. Springer, 2nd. edition edition.
  7. Brehmer, M. and Munzner, T. (2013). A multi-level typology of abstract visualization tasks. IEEE Trans. Visualization and Computer Graphics (TVCG) (Proc. InfoVis), 19(12):2376-2385.
  8. Collins, C., Penn, G., and Carpendale, S. (2009). Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Transactions on Visualization and Computer Graphics, 15(6):1009-1016.
  9. Cuadros, A. M., Paulovich, F. V., Minghim, R., and Telles, G. P. (2007). Point placement by phylogenetic trees and its application to visual analysis of document collections. In Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, pages 99-106. IEEE Computer Society.
  10. Duncan, J. and Humphreys, G. (1989). Visual search and stimulus similarity. Psychological Review, 96:433- 458.
  11. Eades, P., Huang, W., and Hong, S. (2010). A force-directed method for large crossing angle graph drawing. CoRR, abs/1012.4559.
  12. Eades, P. A. (1984). A heuristic for graph drawing. In Congressus Numerantium, volume 42, pages 149-160.
  13. Etemadpour, R., Carlos da Motta, R., Paiva, J. G. d. S., Minghim, R., Ferreira, M. C., and Linsen, L. (2014a). Role of human perception in cluster-based visual analysis of multidimensional data projections. In 5th International Conference on Information Visualization Theory and Applications (IVAPP), pages 107-113, Lisbon, Portugal.
  14. Etemadpour, R., Motta, R., de Souza Paiva, J. G., Minghim, R., de Oliveira, M. C. F., and Linsen, L. (2014b). Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Transactions on Visualization and Computer Graphics, 99(PrePrints):1.
  15. Etemadpour, R., Olk, B., and Linsen, L. (2014c). Eyetracking investigation during visual analysis of projected multidimensional data with 2d scatterplots. In 5th International Conference on Information Visualization Theory and Applications (IVAPP), pages 233- 246, Lisbon, Portugal.
  16. Geng, X., Zhan, D.-C., and Zhou, Z.-H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(6):1098-1107.
  17. Henry, N. and Fekete, J. (2006). Matrixexplorer: a dual-representation system to explore social networks. IEEE Transactions on Visualization and Computer Graphics, 12:677-684.
  18. Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S., and Mller, T. (2010). Dimstiller: Workflows for dimensional analysis and reduction. In IEEE VAST, pages 3-10. IEEE.
  19. Ingram, S., Munzner, T., and Olano, M. (2009). Glimmer: Multilevel mds on the gpu. IEEE Transactions on Visualization and Computer Graphics, 15(2):249-261.
  20. Jolliffe, I. T. (1986). Pincipal Component Analysis. Springer-Verlag.
  21. Koffka, K. (1935). Principles of Gestalt Psychology. . Lund Humphries, London.
  22. Lewis, J. M. and Ackerman, M. (2012). Human cluster evaluation and formal quality measures: A comparative study. pages 1870-1875. 34th Annual Conference of the Cognitive Science Society.
  23. Müller, E., Günnemann, S., Assent, I., and Seidl, T. (2009). Evaluating clustering in subspace projections of high dimensional data. PVLDB, 2(1):1270-1281.
  24. Paiva, J. G. S., C., L. F., Pedrini, H., Telles, G. P., and Minghim, R. (2011). Improved similarity trees and their application to visual data classification. IEEE Transactions on Visualization and Computer Graphics, 17(12):2459-2468.
  25. Paulovich, F. V., Nonato, L. G., Minghim, R., and Levkowitz, H. (2008). Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Transactions on Visualization and Computer Graphics, 14(3):564-575.
  26. Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004). Clutter reduction in multi-dimensional data visualization using dimension reordering. In Ward, M. O. and Munzner, T., editors, INFOVIS, pages 89-96. IEEE Computer Society.
  27. Poco, J., Etemadpour, R., Paulovich, F. V., Long, T. V., Rosenthal, P., de Oliveira, M. C. F., Linsen, L., and Minghim, R. (2011). A framework for exploring multidimensional data with 3d projections. Comput. Graph. Forum, 30(3):1111-1120.
  28. Rensink, R. A. and Baldridge, G. (2010). The perception of correlation in scatterplots. Comput. Graph. Forum, 29(3):1203-1210.
  29. Rosenholtz, R., Twarog, N. R., Schinkel-Bielefeld, N., and Wattenberg, M. (2009). An intuitive model of perceptual grouping for hci design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7809, pages 1331-1340, New York, NY, USA. ACM.
  30. Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  31. Schreck, T., von Landesberger, T., and Bremm, S. (2010). Techniques for precision-based visual analysis of projected data. In Park, J., Hao, M. C., Wong, P. C., and Chen, C., editors, VDA, volume 7530 of SPIE Proceedings, page 75300. SPIE.
  32. Sears, A. (1995). Aide: A step toward metric-based interface development tools. In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, UIST 7895, pages 101-110, New York, NY, USA. ACM.
  33. Sedlmair, M., Brehmer, M., Ingram, S., and Munzner, T. (2012a). Dimensionality reduction in the wild: Gaps and guidance - ubc computer science technical report tr-2012-03. Technical report, The University of British Columbia.
  34. Sedlmair, M., Tatu, A., Munzner, T., and Tory, M. (2012b). A taxonomy of visual cluster separation factors. Comp. Graph. Forum, 31(3pt4):1335-1344.
  35. Sips, M., Neubert, B., Lewis, J. P., and Hanrahan, P. (2009). Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum (Proc. EuroVis 2009), 28(3):831-838.
  36. Song, Y., Zhou, D., Huang, J., Councill, I. G., Zha, H., and Giles, C. L. (2006). Boosting the feature space: Text categorization for unstructured data on the web. In the Sixth IEEE international Conference on Data Mining, (ICDM 2006). IEEE.
  37. Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison-Wesley Longman, Boston, MA, USA.
  38. Tatu, A., Bak, P., Bertini, E., Keim, D. A., and Schneidewind, J. (2010). Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 7810), pages 49-56.
  39. Tatu, A., Theisel, H., Magnor, M., Eisemann, M., Keim, D., Schneidewind, J., and et al. (2009). Combining automated analysis and visualization techniques for effective exploration of high-dimensional data.
  40. Tenembaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric faramework for nonlinear dimensionality reduction. Science, 290:2319-2323.
  41. Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. The Experimental Psychology, Human perception and performance, 8(2):194-214.
  42. Tullis, T. S. (1988). A system for evaluating screen formats: Research and application. Hartson, H. Rex, and Hix, Hartson, Advances in Human-Computer Interaction, 2:214-286.
  43. Van Long, T. and Linsen, L. (2011). Visualizing high density clusters in multidimensional data using optimized star coordinates. Comput. Stat., 26(4):655-678.
  44. Zhang, X., Pan, F., and Wang, W. (2008). Care: Finding local linear correlations in high dimensional data. 2014 IEEE 30th International Conference on Data Engineering, 0:130-139.
  45. Zhang, Y., Passmore, P. J., and Bayford, R. H. (2009). Visualization of multidimensional and multimodal tomographic medical imaging data, a case study. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1900):3121-3148.
Download


Paper Citation


in Harvard Style

Etemadpour R., Linsen L., Crick C. and Forbes A. (2015). A User-centric Taxonomy for Multidimensional Data Projection Tasks . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 51-62. DOI: 10.5220/0005313400510062


in Bibtex Style

@conference{ivapp15,
author={Ronak Etemadpour and Lars Linsen and Christopher Crick and Angus Forbes},
title={A User-centric Taxonomy for Multidimensional Data Projection Tasks},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},
year={2015},
pages={51-62},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005313400510062},
isbn={978-989-758-088-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - A User-centric Taxonomy for Multidimensional Data Projection Tasks
SN - 978-989-758-088-8
AU - Etemadpour R.
AU - Linsen L.
AU - Crick C.
AU - Forbes A.
PY - 2015
SP - 51
EP - 62
DO - 10.5220/0005313400510062