Robust Face Recognition using Key-point Descriptors

Soeren Klemm, Yasmina Andreu, Pedro Henriquez, Bogdan J. Matuszewski

2015

Abstract

Key-point based techniques have demonstrated a good performance for recognition of various objects in numerous computer vision applications. This paper investigates the use of some of the most popular key-point descriptors for face recognition. The emphasis is put on the experimental performance evaluation of the key-point based face recognition methods against some of the most popular and best performing techniques, utilising both global (Eigenfaces) and local (LBP, Gabor filters) information extracted from the whole face image. Most of the results reported in literature so far, on the use of the key-points descriptors for the face recognition, concluded that the methods based on processing of the full face image have somewhat better performances than methods using exclusively key-points. The results reported in this paper suggest that the performance of the key-point based methods could be at least comparable to the leading “whole face” methods and are often better suited to handle face recognition in practical applications, as they do not require face image co-registration, and perform well even with significantly occluded faces.

References

  1. Ahonen, T., Hadid, A., and Pietikinen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 28:2037-2041.
  2. Bartlett, M. S., Movellan, J. R., and Sejnowski, T. J. (2002). Face recognition by independent component analysis. IEEE Trans. Neural Networks, pages 1450-1464.
  3. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3):346-359.
  4. Bekele, D., Teutsch, M., and Schuchert, T. (2013). Evaluation of binary keypoint descriptors. In IEEE Int. Conf. Image Processing (ICIP), pages 3652-3656.
  5. Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711-720.
  6. Bereta, M., Pedrycz, W., and Reformat, M. (2013). Local descriptors and similarity measures for frontal face recognition: A comparative analysis. Journal of Visual Communication and Image Representation, 24(8):1213-1231.
  7. Chellappa, R., Wilson, C., and Sirohey, S. (1995). Human and machine recognition of faces: a survey. Proc. IEEE, 83(5):705-741.
  8. Dreuw, P., Steingrube, P., Hanselmann, H., and Ney, H. (2009). SURF-face: Face recognition under viewpoint consistency constraints. In Proc. British Machine Vision Conf., pages 1-1.
  9. Du, G., Su, F., Cai, A., Ding, M., Bhanu, B., Wahl, F. M., and Roberts, J. (2009). Face recognition using SURF features. In SPIE Proc. Int. Symp. Multispectral Image Proc. and Pattern Recog., pages 749628-1 - 7.
  10. Geng, C. and Jiang, X. (2009). Face recognition using sift features. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 3313-3316.
  11. Jafri, R. and Arabnia, H. R. (2009). A Survey of Face Recognition Techniques. Journal of Information Processing Systems, 5(2):41-68.
  12. Kisku, D. R., Gupta, P., and Sing, J. K. (2010). Face recognition using sift descriptor under multiple paradigms of graph similarity constraints. In Int. J. Multimedia and Ubiquitous Engineering, volume 5, pages 1-18.
  13. Kong, S. G., Heo, J., Abidi, B. R., Paik, J., and Abidi, M. A. (2005). Recent advances in visual and infrared face recognitiona review. Computer Vision and Image Understanding, 97(1):103 - 135.
  14. Liu, N., Lai, J., and Qiu, H. (2011). Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion. In Graphics (ICIG), pages 500-505.
  15. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  16. Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., and Lu, B.-L. (2007). Person-specific sift features for face recognition. In Int. Conf. Acoustics, Speech and Signal Processing, volume 2, pages II-593-II-596.
  17. Martinez, A. and Benavente, R. (1998). The AR Face Database: CVC Technical Report #24.
  18. Martinez, A. M. and Kak, A. C. (2001). PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell., 23(2):228- 233.
  19. Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In In VISAPP International Conference on Computer Vision Theory and Applications, pages 331-340.
  20. Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., pages 971-987.
  21. Phillips, P. J., Hyeonjoon Moon, Rizvi, S. A., and Rauss, P. J. (2000). The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 22(10):1090-1104.
  22. Phillips, P. J., Wechsler, H., Huang, J., and Rauss, P. J. (1998). The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 16(5):295-306.
  23. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In Int. Conf. Computer Vision, pages 2564- 2571.
  24. Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3):519.
  25. Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition., pages I-511-I-518.
  26. Xie, S., Shan, S., Chen, X., and Chen, J. (2010). Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition. IEEE Trans. Image Processing, 19(5):1349-1361.
  27. Yang, B. and Chen, S. (2013). A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing, 120:365-379.
  28. Yang, J., Zhang, D., Frangi, A. F., and Yang, J. (2004). Twodimensional PCA: A new approach to appearancebased face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell., 26(1):131-137.
  29. Zhang, X. and Gao, Y. (2009). Face recognition across pose: A review. Pattern Recognition, 42(11):2876 - 2896.
Download


Paper Citation


in Harvard Style

Klemm S., Andreu Y., Henriquez P. and Matuszewski B. (2015). Robust Face Recognition using Key-point Descriptors . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 447-454. DOI: 10.5220/0005314404470454


in Bibtex Style

@conference{visapp15,
author={Soeren Klemm and Yasmina Andreu and Pedro Henriquez and Bogdan J. Matuszewski},
title={Robust Face Recognition using Key-point Descriptors},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={447-454},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005314404470454},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Robust Face Recognition using Key-point Descriptors
SN - 978-989-758-090-1
AU - Klemm S.
AU - Andreu Y.
AU - Henriquez P.
AU - Matuszewski B.
PY - 2015
SP - 447
EP - 454
DO - 10.5220/0005314404470454