Segmentation of Optic Disc and Blood Vessels in Retinal Images using Wavelets, Mathematical Morphology and Hessian-based Multi-scale Filtering

Luiz Carlos Rodrigues, Mauricio Marengoni

2015

Abstract

A digitized image captured by a fundus camera provides an effective, inexpensive and non-invasive resource for the assessment of vascular damage caused by diabetes, arterial hypertension, hypercholesterolemia and aging. These unhealthy conditions may have very serious consequence like hemorrhages, exudates, branch retinal vein occlusion, leading to the partial or total loss of vision capabilities. This study has focus on the computer vision techniques of image segmentation required for a completely automated assessment system for the vascular conditions of the eye. The study here presented proposes a new algorithm based on wavelets transforms and mathematical morphology for the segmentation of the optic disc and a Hessian based multi-scale filtering to segment the vascular tree in color eye fundus photographs. The optic disc and vessel tree, are both essential to the analysis of the retinal fundus image. The optic disc can be identified by a bright region on the fundus image, for its segmentation we apply Haar wavelets transform to obtain the low frequencies representation of the image and then apply mathematical morphology to enhance the segmentation. The tree vessel segmentation is achieved using a Hessian-based multi-scale filtering that, based on its second order derivatives, explores the tubular shape of a blood vessel to classify the pixels as part, or not, of a vessel. The proposed method is being developed and tested based on the DRIVE database, which contains 40 color eye fundus images.

References

  1. Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological measurement, 26(5):R155-99.
  2. Burrus, C. S., Gopinath, R. A., and Guo, H. (1998). Introduction to Wavelets and Wavelet Transforms: A Primer.
  3. Florack, L. M., ter Haar Romeny, B. M., Koenderink, J. J., and Viergever, M. a. (1992). Scale and the differential structure of images. Image and Vision Computing, 10(6):376-388.
  4. Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998). Multiscale vessel enhancement filtering 1 Introduction 2 Method. 1496:130-137.
  5. Fraz, M. M., Remagnino, P., Hoppe, a., Uyyanonvara, B., Rudnicka, a. R., Owen, C. G., and Barman, S. a. (2012). Blood vessel segmentation methodologies in retinal images-a survey. Computer methods and programs in biomedicine, 108(1):407-33.
  6. Haralick, R. M. and Sternberg, S. R. (1987). Image Analysis Morphology. (4):532-550.
  7. Kande, G. B., Subbaiah, P. V., and Savithri, T. S. (2010). Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J. Med. Syst., 34(5):849-858.
  8. Koenderink, J. J. (1984). Biological Cybernetics The Structure of Images. 370:363-370.
  9. Lupas, C. A., Tegolo, D., and Trucco, E. (2010). FABC : Retinal Vessel Segmentation Using AdaBoost. 14(5):1267-1274.
  10. Mallat, S. G. (1989). Theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:674-693.
  11. Marín, D., Aquino, A., Gegúndez-arias, M. E., and Bravo, J. M. (2010). Pr E oo f Pr E oo f. pages 1-13.
  12. Ricci, E. and Perfetti, R. (2007). Retinal blood vessel segmentation using line operators and support vector classification. Medical Imaging, IEEE Transactions on, 26(10):1357-1365.
  13. Rossant, F., Badellino, M., Chavillon, A., Bloch, I., and Paques, M. (2011). A Morphological Approach for Vessel Segmentation in Eye Fundus Images, with Quantitative Evaluation. Journal of Medical Imaging and Health Informatics, 1(1):42-49.
  14. Shapiro, L. and Stockman, G. (2001). Computer Vision, volume 2004.
  15. Sinthanayothin, C., Boyce, J. F., Cook, H. L., and Williamson, T. H. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology, 83(8):902-910.
  16. Staal, J., Member, A., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., Ginneken, B. V., and Detection, A. R. (2004). Ridge-Based Vessel Segmentation in Color Images of the Retina. 23(4):501-509.
  17. Witkin, A. P. (1983). Scale-space Filtering. In Proceedings of the Eighth International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'83, pages 1019- 1022, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
  18. Zana, F. and Klein, J. C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 10(7):1010-9.
Download


Paper Citation


in Harvard Style

Rodrigues L. and Marengoni M. (2015). Segmentation of Optic Disc and Blood Vessels in Retinal Images using Wavelets, Mathematical Morphology and Hessian-based Multi-scale Filtering . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 617-622. DOI: 10.5220/0005317006170622


in Bibtex Style

@conference{visapp15,
author={Luiz Carlos Rodrigues and Mauricio Marengoni},
title={Segmentation of Optic Disc and Blood Vessels in Retinal Images using Wavelets, Mathematical Morphology and Hessian-based Multi-scale Filtering},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={617-622},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005317006170622},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Segmentation of Optic Disc and Blood Vessels in Retinal Images using Wavelets, Mathematical Morphology and Hessian-based Multi-scale Filtering
SN - 978-989-758-089-5
AU - Rodrigues L.
AU - Marengoni M.
PY - 2015
SP - 617
EP - 622
DO - 10.5220/0005317006170622