Automatic Road Segmentation of Traffic Images
Chiung-Yao Fang, Han-Ping Chou, Jung-Ming Wang, Sei-Wang Chen
2015
Abstract
Automatic road segmentation plays an important role in many vision-based traffic applications. It provides a priori information for preventing the interferences of irrelevant objects, activities, and events that take place outside road areas. The proposed road segmentation method consists of four major steps: background-shadow model generation and updating, moving object detection and tracking, background pasting, and road location. The full road surface is finally recovered from the preliminary one using a progressive fuzzy theoretic shadowed sets technique. A large number of video sequences of traffic scenes under various conditions have been employed to demonstrate the feasibility of the proposed road segmentation method.
References
- Ndoye, M., Totten V. F., Krogmeier, J. V., and Bullock, D. M., 2011. Sensing and signal processing for vehicle re-identification and travel time estimation. IEEE Trans. on Intelligent Transportation Systems, 12(1), pp. 119-131.
- Perez, J., Milanes, V., and Onieva, E., 2011. Cascade architecture for lateral control in autonomous vehicles. IEEE Trans. on Intelligent Transportation Systems, 12(1), pp. 73-82.
- Skog, I., and P. Händel, 2009. In-car positioning and navigation technologies - A Survey. IEEE Trans. on Intelligent Transportation Systems, 10(3), pp. 4- 21.
- Alvarez, J. M., Lopez, A., and Baldrich, R., 2008. Illuminant-invariant model-based road segmentation. Proc. of IEEE Intelligent Vehicles Symp., Eindhoven University of Technology Eindhoven, The Netherlands.
- Chen, Y. Y., & Chen, S. W., 2010. A restricted bus-lane monitoring system. Proc. of the 23rd IPPR Conf. on CVGIP, Kaohsiung, Taiwan.
- Chung, Y. C., Wang, J. M., Chang, C. L., and Chen, S. W., 2004. Road segmentation with fuzzy and shadowed sets. Proc. of Asian Conf. on Computer Vision, Korea.
- Ha, D. M., Lee, J. M., and Kim, Y. D., 2004. Neuraledge-based vehicle detection and traffic parameter extraction. Image and Vision Computing, 22(11), pp.899-907.
- Alvarez, J. M. and Lopez, A. M., 2011. Road detection based on illumination invariance. IEEE Trans. on Intelligent Transportation Systems, 12(1), pp. 184- 193.
- Courbon, J., Mezouar, Y., and Martinet, P., 2009. Autonomous navigation of vehicles from a visual memory using a generic camera model. IEEE Trans. on Intelligent Transportation Systems, 10(3), pp. 392-402.
- Obradovic, D., Lenz, H., and Shupfner, M., 2008. Fusion of sensor data in siemens car navigation system,” IEEE Trans. on Vehicular Technology, Vol. 56, No. 1, pp. 43-50, 2008.
- Danescu, R. and Nedevschi, S., 1994. Probabilistic lane tracking in difficult road scenarios using stereovision. IEEE Trans. on Intelligent Transportation Systems, 10(2), pp. 272-282.
- Santos, M., Linder, M., Schnitman, L., Nunes, U., and Oliveria, L., 2013. Learning to segment roads for traffic analysis in urban images. IEEE Intelligent Vehicles Symposium, pp. 527-532, Gold Coast, QLD.
- Tan, C., Hong, T., Chang, T., and Shneier, M., 2006. Color model-based real-time learning for road following. Proc. of the IEEE Conf. on Intelligent Transportation Systems, Toronto, Canada.
- Sha, Y., Zhang, G. Y., and Yang, Y., 2007. A road detection algorithm by boosting using feature combination. Proc. of IEEE Intelligent Vehicles Symposium, Istanbul, Turkey.
- Wang, J. M., Chung, Y. C., Lin, S. C., Chang, S. L., and Chen, S. W., 2004. Vision-based traffic measurement system. Proc. of IEEE Int'l. Conf. on Pattern Recognition, Cambridge, United Kingdom.
- Wang, J. M., Chung, Y. C., Lin, S. C., Chang, S. L., and Chen, S. W., 2004. Vision-based traffic measurement system. Proc. of IEEE Int'l. Conf. on Pattern Recognition, Cambridge, United Kingdom.
- Ma, B., Lakshmanan, S., and Hero, A. O., 2000. Simultaneous detection of lane and pavement boundaries using model-based multisensor fusion,” IEEE Trans. on Intelligent Transportation Systems, 1(3), pp. 135-147.
- Beucher, S. and Bilodeau, M., 1994. Road segmentation and obstacle detection by a fast watershed transform. Proc. of the Intelligent Vehicles Symp., pp. 296-301.
- Bilodeau, M. and Peyrard, R., 1992. Multi-pipeline architecture for real time road segmentation by mathematical morphology,” Proc. of the 2nd Prometheus Workshop on Collision Avoidance, pp. 208-214, Nurtingen, RFA.
- Soquet, N., Aubert, D., and Hautiere, N., 2007. Road segmentation supervised by an extended V-disparity algorithm for autonomous navigation,” Proc. of IEEE Intelligent Vehicles Symp., Istanbul, Turkey.
- Mackeown, W. P. J., Greenway, P., Thomas, B. T., and Wright, W. A., 1994. Road recognition with a neural network. Engineering Applications of Artificial Intelligence, 7(2), pp. 169-176.
- Wang, J. M., Cherng, S., Fuh, C. S., and Chen, S. W., 2008. Foreground object detection using two successive images,” IEEE Int'l. Conf. on Advanced Video and Signal based Surveillance, pp. 301-306.
- Paragios, N., 2006, Chapter 9: Curve Propagation, Level Set Methods and Grouping. Handbook of Mathematical Models in Computer Vision, Edited by N. Paragios, Y. Chen, and O. Faugeras, Springer Science + Business Media Inc., pp. 145-159.
- Comaniciu, D., Ramesh, V., and Meer, P., 2003. Kernelbased object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(5), pp. 564- 577.
- Chen, S. W., Chen, C. F., Chen, M. S., Cherng, S., Fang, C. Y., and Chang, K. E., 1997. Neural-fuzzy classification for segmentation of remotely sensed images,” IEEE Trans. on Signal Processing, 45(11), pp. 2639-2654.
- Pedrycz, W., 2009. From fuzzy sets to shadowed sets: interpretation and computing. Int'l Journal of Intelligent Systems, 24, pp. 48-61.
- Wang, J. M., Chen, S. W., and Fuh, C. S., 2011. Gaussian mixture of background and shadow model. Proc. of the IADIS Conf. on Computer Graphics, Visualization, Computer Vision, and Image Processing, Rome, Italy.
- Fritsch, J., Tobias, K., and Franz, K., 2014. Monocular road terrain detection by combining visual and spatial information. IEEE Trans. on Intelligent Transportation Systems, 15(4), pp. 1586-1596.
Paper Citation
in Harvard Style
Fang C., Chou H., Wang J. and Chen S. (2015). Automatic Road Segmentation of Traffic Images . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 469-477. DOI: 10.5220/0005321904690477
in Bibtex Style
@conference{visapp15,
author={Chiung-Yao Fang and Han-Ping Chou and Jung-Ming Wang and Sei-Wang Chen},
title={Automatic Road Segmentation of Traffic Images},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={469-477},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005321904690477},
isbn={978-989-758-090-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Automatic Road Segmentation of Traffic Images
SN - 978-989-758-090-1
AU - Fang C.
AU - Chou H.
AU - Wang J.
AU - Chen S.
PY - 2015
SP - 469
EP - 477
DO - 10.5220/0005321904690477