Defining a Roadmap Towards Comparative Research in Online Activity Recognition on Mobile Phones

Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, Paul J. M. Havinga

2015

Abstract

Many context-aware applications based on activity recognition are currently using mobile phones. Most of this work is done in an offline way. However, there is a shift towards an online approach in recent studies, where activity recognition systems are implemented on mobile phones. Unfortunately, most of these studies lack proper reproducibility, resource consumption analysis, validation, position-independence, and personalization. Moreover, they are hard to compare in various aspects due to different experimental setups. In this paper, we present a short overview of the current research on online activity recognition using mobile phones, and highlight their limitations. We discuss these studies in terms of various aspects, such as their experimental setups, position-independence, resource consumption analysis, performance evaluation, and validation. Based on this analysis, we define a roadmap towards a better comparative research on online activity recognition using mobile phones.

References

  1. Anjum, A. and Ilyas, M. (2013). Activity recognition using smartphone sensors. In 2013 IEEE Consumer Communications and Networking Conference (CCNC), pages 914-919.
  2. Berchtold, M., Budde, M., Gordon, D., Schmidtke, H., and Beigl, M. (2010). ActiServ: Activity recognition service for mobile phones. In 2010 International Symposium on Wearable Computers (ISWC), pages 1-8.
  3. Das, B., Seelye, A., Thomas, B., Cook, D., Holder, L., and Schmitter-Edgecombe, M. (2012). Using smart phones for context-aware prompting in smart environments. In 2012 IEEE Consumer Communications and Networking Conference (CCNC), pages 399-403.
  4. Das, S., Green, L., Perez, B., Murphy, M., and Perring, A. (2010). Detecting user activities using the accelerometer on android smartphones. The Team for Research in Ubiquitous Secure Technology, TRUSTREU Carnefie Mellon University.
  5. Frank, J., Mannor, S., and Precup, D. (2011). Activity recognition with mobile phones. In Machine Learning and Knowledge Discovery in Databases, number 6913 in Lecture Notes in Computer Science, pages 630-633. Springer Berlin Heidelberg.
  6. Gil, G. B., Berlanga, A., and Molina, J. M. (2011). Physical actions architecture: Context-aware activity recognition in mobile devices. In User-Centric Technologies and Applications, pages 19-27. Springer.
  7. Gomes, J., Krishnaswamy, S., Gaber, M., Sousa, P., and Menasalvas, E. (2012). MARS: A personalised mobile activity recognition system. In 2012 IEEE 13th International Conference on Mobile Data Management (MDM), pages 316-319.
  8. Guiry, J. J., Ven, P. v. d., and Nelson, J. (2012). Orientation independent human mobility monitoring with an android smartphone. ACTAPRESS.
  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10-18.
  10. Incel, O. D., Kose, M., and Ersoy, C. (2013). A review and taxonomy of activity recognition on mobile phones. BioNanoScience, 3(2):145-171.
  11. Khan, A. M., Siddiqi, M. H., and Lee, S.-W. (2013). Exploratory data analysis of acceleration signals to select light-weight and accurate features for realtime activity recognition on smartphones. Sensors, 13(10):13099-13122.
  12. Khan, A. M., Tufail, A., Khattak, A. M., and Laine, T. H. (2014). Activity recognition on smartphones via sensor-fusion and KDA-based SVMs. International Journal of Distributed Sensor Networks, 2014.
  13. Kim, T.-S., Cho, J.-H., and Kim, J. T. (2013). Mobile motion sensor-based human activity recognition and energy expenditure estimation in building environments. In Sustainability in Energy and Buildings, number 22 in Smart Innovation, Systems and Technologies, pages 987-993. Springer Berlin Heidelberg.
  14. Kose, Mustafa, Incel, O. D., and Ersoy, C. (2012). Online human activity recognition on smart phones. In Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data,, pages 11-15.
  15. Lane, N., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., and Campbell, A. (2011). BeWell: A smartphone application to monitor, model and promote wellbeing. IEEE.
  16. Lara, O. and Labrador, M. (2012). A mobile platform for real-time human activity recognition. In 2012 IEEE Consumer Communications and Networking Conference (CCNC), pages 667-671.
  17. Lara, O. D. and Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. Communications Surveys & Tutorials, IEEE, 15(3):1192- 1209.
  18. Lau, S. L., Konig, I., David, K., Parandian, B., CariusDussel, C., and Schultz, M. (2010). Supporting patient monitoring using activity recognition with a smartphone. In Wireless Communication Systems (ISWCS), 2010 7th International Symposium on, pages 810- 814. IEEE.
  19. Liang, Y., Zhou, X., Yu, Z., and Guo, B. (2013). Energyefficient motion related activity recognition on mobile devices for pervasive healthcare. Mobile Networks and Applications, pages 1-15.
  20. Liang, Y., Zhou, X., Yu, Z., Guo, B., and Yang, Y. (2012). Energy efficient activity recognition based on low resolution accelerometer in smart phones. In Advances in Grid and Pervasive Computing, number 7296 in Lecture Notes in Computer Science, pages 122-136. Springer Berlin Heidelberg.
  21. Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T., and Campbell, A. T. (2010). The jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys 7810, pages 71-84, New York, NY, USA. ACM.
  22. Marin-Perianu, M., Lombriser, C., Amft, O., Havinga, P., and Tröster, G. (2008). Distributed activity recognition with fuzzy-enabled wireless sensor networks. In Distributed Computing in Sensor Systems, pages 296- 313. Springer.
  23. Martin, H., Bernardos, A. M., Iglesias, J., and Casar, J. R. (2013). Activity logging using lightweight classification techniques in mobile devices. Personal and Ubiquitous Computing, 17(4):675-695.
  24. Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S. B., Zheng, X., and Campbell, A. T. (2008). Sensing meets mobile social networks: The design, implementation and evaluation of the CenceMe application. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys 7808, pages 337-350, New York, NY, USA. ACM.
  25. Ouchi, K. and Doi, M. (2012). Indoor-outdoor activity recognition by a smartphone. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp 7812, pages 600-601, New York, NY, USA. ACM.
  26. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., and Srivastava, M. (2010). Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw., 6(2):1-27.
  27. Ryder, J., Longstaff, B., Reddy, S., and Estrin, D. (2009). Ambulation: A tool for monitoring mobility patterns over time using mobile phones. In International Conference on Computational Science and Engineering, 2009. CSE 7809, volume 4, pages 927-931.
  28. Schindhelm, C. (2012). Activity recognition and step detection with smartphones: Towards terminal based indoor positioning system. In 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pages 2454-2459.
  29. Shoaib, M., Bosch, S., Incel, O. D., Scholten, H., and Havinga, P. J. M. (2014). Fusion of smartphone motion sensors for physical activity recognition. Sensors, 14(6):10146-10176.
  30. Shoaib, M., Scholten, H., and Havinga, P. (2013). Towards physical activity recognition using smartphone sensors. In Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC), pages 80-87.
  31. Siirtola, P. (2012). Recognizing human activities userindependently on smartphones based on accelerometer data. International Journal of Interactive Multimedia and Artificial Intelligence, 1(Special Issue on Distributed Computing and Artificial Intelligence):38-45.
  32. Siirtola, P. and Roning, J. (2013). Ready-to-use activity recognition for smartphones. In 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pages 59-64.
  33. Stewart, V., Ferguson, S., Peng, J.-X., and Rafferty, K. (2012). Practical automated activity recognition using standard smartphones. In Pervasive Computing and Communications Workshops, IEEE International Conference on, volume 0, pages 229-234, Los Alamitos, CA, USA. IEEE Computer Society.
  34. Thiemjarus, S., Henpraserttae, A., and Marukatat, S. (2013). A study on instance-based learning with reduced training prototypes for device-contextindependent activity recognition on a mobile phone. In 2013 IEEE International Conference on Body Sensor Networks (BSN), pages 1-6.
  35. Vo, Q. V., Hoang, M. T., and Choi, D. (2013). Personalization in mobile activity recognition system using kmedoids clustering algorithm. International Journal of Distributed Sensor Networks, 2013.
  36. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., and Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 7809, pages 179-192, New York, NY, USA. ACM.
  37. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., and Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activityadaptive approach. In 2012 16th International Symposium on Wearable Computers (ISWC), pages 17-24.
  38. Zhao, K., Du, J., Li, C., Zhang, C., Liu, H., and Xu, C. (2013). Healthy: A diary system based on activity recognition using smartphone. In 2013 IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), pages 290-294.
Download


Paper Citation


in Harvard Style

Shoaib M., Bosch S., Durmaz Incel O., Scholten H. and J. M. Havinga P. (2015). Defining a Roadmap Towards Comparative Research in Online Activity Recognition on Mobile Phones . In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS, ISBN 978-989-758-084-0, pages 154-159. DOI: 10.5220/0005324401540159


in Bibtex Style

@conference{peccs15,
author={Muhammad Shoaib and Stephan Bosch and Ozlem Durmaz Incel and Hans Scholten and Paul J. M. Havinga},
title={Defining a Roadmap Towards Comparative Research in Online Activity Recognition on Mobile Phones},
booktitle={Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,},
year={2015},
pages={154-159},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005324401540159},
isbn={978-989-758-084-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,
TI - Defining a Roadmap Towards Comparative Research in Online Activity Recognition on Mobile Phones
SN - 978-989-758-084-0
AU - Shoaib M.
AU - Bosch S.
AU - Durmaz Incel O.
AU - Scholten H.
AU - J. M. Havinga P.
PY - 2015
SP - 154
EP - 159
DO - 10.5220/0005324401540159