Millimetre-wave Electro-Optic Modulator with Quasi-Phase-Matching Array of Orthogonal-Gap-Embedded Patch-antennas on Low-k Dielectric Material

Yusuf Nur Wijayanto, Atsushi Kanno, Hiroshi Murata, Sinya Nakajima, Tetsuya Kawanishi, Yasuyuki Okamura

2015

Abstract

In Fibre-Wireless (Fi-Wi) links, conversion devices between wireless microwave/ millimetre-wave and lightwave signals are required. In this paper, we propose a wireless millimetre-wave-lightwave signal converter using an electro-optic (EO) modulator with Quasi-Phase-Matching (QPM) array of orthogonal-gap-embedded patch-antennas on a low-k dielectric material. Wireless millimetre-wave signals can be received and converted directly to lightwave signals using the proposed device. It can be operated with no external power supply and extremely-low millimetre-wave losses. The orthogonal-gap-embedded patch-antennas can be used for receiving dual-linearized or circular polarizations of wireless millimetre-wave signals. The QPM array structure can be adopted for enhancing modulation efficiency by transit-time effects consideration. Structure, analysis, and experimental of the proposed device are discussed for 40GHz operational millimetre-wave bands.

References

  1. Abichar, Z., Peng, Y., and Chang, J., “WiMAX: The Emergence of Wireless Broadband,” IEEE Computer Society, Vols. July-August, pp. 44-48, 2006.
  2. Akyildiz, I. F., Gutierrez-Estevez, D.M., Reyes, E.C., “The evolution to 4G cellular systems: LTE-Advanced,” Physical Communication, vol. 3, pp. 217-244, 2010.
  3. Bridges, W. B., Sheehy, F.T., and Schaffner, J.H., “WaveCoupled LiNbO3 Modulator for Microwave and Millimeter-Wave Modulation,” IEEE Photonics Technology Letters, vol.3, no.2, pp.133-135, February 1991.
  4. Gupta, V. R. and Gupta, N., “Characteristics of a Compact Microstrip Antenna,” Microwave and Optical Technology Letters, vol.40, no.2, pp.158-160, January 2004.
  5. Hu, H., Ricken, R., Sohler, W., "Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium," Applied Physics B, vol.98, pp.677-679, 2010.
  6. Iezekiel, S., Microwave photonics: Devices and Applications, John Wiley & Sons Ltd, Chichester, UK, 2009.
  7. Lefort, G., and Razban, T., “Microstrip Antennas Printed on Lithium Niobate Substrate,” Electronics Letters, vol.33 no.9, pp.726-727, April 1997.
  8. Lu, X., Wang, P., Niyato, D., and Hossain, E., “Dynamic Spectrum Access in Cognitive Radio Networks with RF Energy Harvesting,” IEEE Wireless Communications, pp. 102-110, Jun. 2014.
  9. Mendeiros, H. P., Maciel, M. C., Sauza, R. D., and Pellenz, M.E., “Lightweight Data Compression in Wireless Sensor Networks Using Human Coding,” International Journal of Distributed Sensor Networks, vol. 2014, ID 672921, Jan. 2014.
  10. Murata, H., Miyanaka, R., and Okamura, Y., “Wireless Space-Division-Multiplexed Signal Discrimination Device Using Electro-Optic Modulator with AntennaCoupled Electrodes and Polarization-Reversed Sructures,” International Journal of Microwave and Wireless Technologies, vol.4, pp.399-405, April 2012.
  11. Pi, Z. and Khan, F., “An introduction to millieter-wave mobile broadband systems,” IEEE Communications Magazine, vol. June 2011, pp. 101-107, 2011.
  12. Recsi. ITU-R P.676-5, “Attenuation of atmospheric gases,” 2001.
  13. Rodriguez-Berral, R., Mesa, F., and Jackson, D. R., “Gap Discontinuity in Microstrip Lines: An Accurate Semi analytical Formulation,” IEEE Transactions on Microwave Theory and Techniques, vol.59, no.6, pp, 1441-1453, June 2011.
  14. Shi, J., Huang, C., and Pan, C., “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Materials, vol.3, pp.41, April 2011.
  15. Seeds, A. J., “Microwave Photonics,” IEEE Transactions on Microwave Theory and Techniques, vol.50, no.3, pp.877-887, March 2002.
  16. Shinada, S., Kawanishi, T., and Izutsu, M., “A Resonant Type LiNbO3 Optical Modulator Array with MicroStrip Antennas,” IEICE Transactions on Electronics, vol.E90-C, no.5, pp.1090-1095, May 2007.
  17. Sheehy, F. T., Bridges, W. B., and Schaffner, J. H., “60 GHz and 94 GHz Antenna-Coupled LiNbO3 Electrooptic Modulators,” IEEE Photonics Technology Letters, vol.5, no.3, pp.307-310, March 1993.
  18. Uddin, M. A., Chan, H. P., Tsun, T. O., and Chan, Y. C., "Uneven Curing Induced Interfacial Delamination of UV Adhesive-Bonded Fiber Array in V-Groove for Photonic Packaging," Journal of Lightwave Technology, vol.24, no.3, pp.1342-1349, March 2006.
  19. Watanabe, I., Nakata, T., Tsuji, M., Makita, K, Torikai, T., and Taguchi, K., “High-Speed, High-Reliability PlanarStructure Superlattice Avalanche Photodiodes for 10- Gb/s Optical Receivers,” Journal of Lightwave Technology, vol.18, no.12, pp. 2200- 2207, December 2000.
  20. Wijayanto, Y. N., Murata, H., and Okamura, Y., “Novel Electro-Optic Microwave-Lightwave Converters Utilizing a Patch-antenna Embedded with a Narrow Gap,” IEICE Electronics Express, vol.8, no.7, pp.491- 497, April 2011.
  21. Wijayanto, Y. N., Murata, H., Kawanishi, T., and Okamura, Y., “X-Cut LiNbO3 Optical Modulators Using GapEmbedded Patch-Antennas for Wireless-Over-Fiber Systems,” Advances in Optical Technologies, vol. 2012, Article ID 383212, 8 pages, 2012.
  22. Wijayanto, Y. N., Murata, H., and Okamura, Y., "ElectroOptic Beam Forming Device Using a TwoDimensional Array of Patch-Antennas Embedded with Orthogonal-Gaps for Millimeter-Wave Signals," IEEE Photonic Conference 2013, Seattle, 2013.
  23. Yariv, A., Quantum Electronics, 3rd ed., Wiley, New York, 1989.
Download


Paper Citation


in Harvard Style

Wijayanto Y., Kanno A., Murata H., Nakajima S., Kawanishi T. and Okamura Y. (2015). Millimetre-wave Electro-Optic Modulator with Quasi-Phase-Matching Array of Orthogonal-Gap-Embedded Patch-antennas on Low-k Dielectric Material . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 5-13. DOI: 10.5220/0005325200050013


in Bibtex Style

@conference{photoptics15,
author={Yusuf Nur Wijayanto and Atsushi Kanno and Hiroshi Murata and Sinya Nakajima and Tetsuya Kawanishi and Yasuyuki Okamura},
title={Millimetre-wave Electro-Optic Modulator with Quasi-Phase-Matching Array of Orthogonal-Gap-Embedded Patch-antennas on Low-k Dielectric Material},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={5-13},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005325200050013},
isbn={978-989-758-093-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Millimetre-wave Electro-Optic Modulator with Quasi-Phase-Matching Array of Orthogonal-Gap-Embedded Patch-antennas on Low-k Dielectric Material
SN - 978-989-758-093-2
AU - Wijayanto Y.
AU - Kanno A.
AU - Murata H.
AU - Nakajima S.
AU - Kawanishi T.
AU - Okamura Y.
PY - 2015
SP - 5
EP - 13
DO - 10.5220/0005325200050013