Deadlock Avoidance in Interorganizational Business Processes using a Possibilistic WorkFlow Net

Leiliane Rezende, Stéphane Julia

2015

Abstract

In this paper, an approach based on Siphon structures, possibilistic Petri nets and interorganizational WorkFlow nets is proposed to deal with deadlock situations in interorganizational business processes. A deadlock situation is characterized by an insufficiently marked Siphon. Possibilistic Petri nets with uncertainty on the marking and on the transition firing are used to ensure the existence of at least one transition firing sequence enabling the completion of the process without encountering the deadlock situation. Routing patterns and communication protocols that exist in business processes are modeled by interorganizational WorkFlow nets. Combining both formalisms, a kind of possibilistic WorkFlow net is obtained.

References

  1. Aalst, W. (1999). Interorganizational workflows: An approach based on message sequence charts and petri nets. Systems Analysis - Modelling - Simulation, 34:335 - 367.
  2. Aalst, W. v. d. and Hee, K. v. (2004). Workflow Management: Models, Methods, and Systems. MIT Press.
  3. Ahmad, F., Huang, H., and Wang, X. (2011). Analysis of the petri net model of parallel manufacturing processes with shared resources. Information Sciences, 181:5249-5266.
  4. Awad, A. and Puhlmann, F. (2008). Structural detection of deadlocks in business process models. In Business Information Systems, volume 7, pages 239-250. Springer.
  5. Barkaoui, K. and Abdallah, I. (1995). Deadlock avoidance in fms based on structural theory of petri nets. In IEEE Symposium on Emerging Technologies and Factory Automation, volume 2, pages 499-510.
  6. Boer, E. and Murata, T. (1994). Generating basis siphons and traps of petri nets using the sign incidence matrix. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41:266-271.
  7. Cardoso, J. (1999). Time fuzzy petri nets. In Fuzziness in Petri Nets, pages 115 - 145. Springer.
  8. Cardoso, J., Valette, R., and Dubois, D. (1989). Petri nets with uncertain markings. In Applications and Theory of Petri Nets, volume 483, pages 64 - 78.
  9. Chen, Y. and Li, Z. (2011). Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory structure for flexible manufacturing systems. Automatica, 47:1028-1034.
  10. Chen, Y., Li, Z., and Zhou, M. (2012). Behaviorally optimal and structurally simple liveness-enforcing supervisors of flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, 42:615-629.
  11. Chu, F. and Xie, X.-L. (1997). Deadlock analysis of petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation, 13:793-804.
  12. Dingle, N. J., Knottenbelt, W. J., and Suto, T. (2009). Pipe2: A tool for the performance evaluation of generalised stochastic petri nets. SIGMETRICS Performance Evaluation Review, 36:34-39.
  13. Ezpeleta, J., Colom, J. M., and Martnez, J. (1995). A petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 11:173-184.
  14. Ezpeleta, J., Couvreur, J., and Silva, M. (1993). A new technique for finding a generating family of siphons, traps and st-components. application to colored petri nets. In Advances in Petri Nets 1993, volume 674, pages 126-147. Springer Berlin Heidelberg.
  15. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., and Wolf, K. (2011). Analysis on demand: Instantaneous soundness checking of industrial business process models. Data and Knowledge Engineering, 70:448-466.
  16. Gang, X. and Ming, W. Z. (2004). Systemic solutions to deadlock in fms. In American Control Conference, volume 6, pages 5740-5745.
  17. Hack, M. (1972). Analysis production schemata by petri nets. Master's thesis, Massachusetts Institute of Technology.
  18. Huang, Y., Jeng, M., Xie, X., and Chung, S. (2001). Deadlock prevention policy based on petri nets and siphons. International Journal of Production Research, 39:283-305.
  19. Huang, Y.-S., Pan, Y.-L., and Zhou, M. (2012). Computationally improved optimal deadlock control policy for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, 42:404-415.
  20. Iordache, M., Moody, J., and Antsaklis, P. (2002). Synthesis of deadlock prevention supervisors using petri nets. IEEE Transactions on Robotics and Automation, 18:59-68.
  21. Karatkevich, A. (2007). Analysis by solving logical equations calculation of siphons and traps. In Dynamic Analysis of Petri Net-Based Discrete Systems, volume 356, pages 87-93. Springer.
  22. Kohler, M. and Schaad, A. (2008). Avoiding policy-based deadlocks in business processes. In International Conference on Availability, Reliability and Security, pages 709-716.
  23. Li, Z., Liu, G., Hanisch, H.-M., and Zhou, M. (2012). Deadlock prevention based on structure reuse of petri net supervisors for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, 42:178-191.
  24. Li, Z. and Zhou, M. (2004). Elementary siphons of petri nets and their application to deadlock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, 34:38-51.
  25. Liu, G., Li, Z., Barkaoui, K., and Al-Ahmari, A. (2013). Robustness of deadlock control for a class of petri nets with unreliable resources. Information Sciences, 235:259-279.
  26. Maruta, T., Onoda, S., Ikkai, Y., Kobayashi, T., and Komoda, N. (1998). A deadlock detection algorithm for business processes workflow models. In IEEE InternationalConference on Systems Man and Cybernetics, volume 1, pages 611-616.
  27. Members, W. M. C. (1994). Glossary - a workflow management coalition specification. Technical report, Coalition, Workflow Management.
  28. Mohanty, M. and Kumara, P. (2013). Deadlock prevention in process control computer system. International Conferenceon DistributedComputingandInternetTechnology, pages 12-16.
  29. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77:541-580.
  30. Park, J. and Reveliotis, S. (2001). Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic Control, 46:1572-1583.
  31. Rubinstein, R. and Kroese, D. (2008). Simulation and the Monte Carlo Method. Wiley, 2 edition.
  32. Sadiq, W., Maria, and Orlowska, E. (2000). Analyzing process models using graph reduction techniques. Information Systems, 25:117-134.
  33. Sibertin-Blanc, C. (2001). Cooperative objects: Principles, use and implementation. In Concurrent ObjectOriented Programming and Petri Nets, volume 2001, pages 216-246.
  34. Silva, L. d. F., Soares Passos, L. M., Soares, M. d. S., and Julia, S. (2013). Siphon-based deadlock prevention policy for interorganizational workflow net design. In IEEEInternationalConferenceonInformationReuseandIntegration, pages 293-300.
  35. Soares Passos, L. and Julia, S. (2009). Qualitative analysis of workflow nets using linear logic: Soundness verification. In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages 2843 -2847.
  36. Tang, F., You, I., Yu, S., Wang, C.-L., Guo, M., and Liu, W. (2012). An efficient deadlock prevention approach for service oriented transaction processing. Computers & Mathematics with Applications, 63:458-468.
  37. Uzam, M. and Zhou, M. (2007). An iterative synthesis approach to petri net-based deadlock prevention policy for flexible manufacturing systems. IEEE Transactions on Systems, Man, and Cybernetics, 37:362-371.
  38. van der Aalst, W. M. P. (1998a). The application of petri nets to workflow management. Journal of Circuits Systems and Computers, 8:21-66.
  39. van der Aalst, W. M. P. (1998b). Modeling and analyzing interorganizational workflows. In International Conference on Application of Concurrency to System Design, pages 262-272.
  40. van der Aalst, W. M. P. (2000). Loosely coupled interorganizational workflows: modeling and analyzing workflows crossing organizational boundaries. Information & Management, 37:67-75.
  41. van der Aalst, W. M. P., van Hee, K. M., ter Hofstede, A. H. M., Sidorova, N., Verbeek, H. M. W., Voorhoeve, M., and Wynn, M. T. (2011). Soundness of workflow nets: Classification, decidability, and analysis. Form. Asp. Comput., 23:333-363.
  42. Xiong, P., Zhou, M., and Pu, C. (2009). A petri net siphon based solution to protocol-level service composition mismatches. In IEEE International Conference onWeb Services, pages 952-958.
  43. Zhong, C. and Li, Z. (2011). Petri Net Based Deadlock Prevention Approach for Flexible Manufacturing Systems, chapter 15, pages 416-433. Information Science Reference.
Download


Paper Citation


in Harvard Style

Rezende L. and Julia S. (2015). Deadlock Avoidance in Interorganizational Business Processes using a Possibilistic WorkFlow Net . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 429-439. DOI: 10.5220/0005347004290439


in Bibtex Style

@conference{iceis15,
author={Leiliane Rezende and Stéphane Julia},
title={Deadlock Avoidance in Interorganizational Business Processes using a Possibilistic WorkFlow Net},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={429-439},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005347004290439},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Deadlock Avoidance in Interorganizational Business Processes using a Possibilistic WorkFlow Net
SN - 978-989-758-096-3
AU - Rezende L.
AU - Julia S.
PY - 2015
SP - 429
EP - 439
DO - 10.5220/0005347004290439