TIDAQL - A Query Language Enabling on-Line Analytical Processing of Time Interval Data

Philipp Meisen, Diane Keng, Tobias Meisen, Marco Recchioni, Sabina Jeschke

2015

Abstract

Nowadays, time interval data is ubiquitous. The requirement of analyzing such data using known techniques like on-line analytical processing arises more and more frequently. Nevertheless, the usage of approved multidimensional models and established systems is not sufficient, because of modeling, querying and processing limitations. Even though recent research and requests from various types of industry indicate that the handling and analyzing of time interval data is an important task, a definition of a query language to enable on-line analytical processing and a suitable implementation are, to the best of our knowledge, neither introduced nor realized. In this paper, we present a query language based on requirements stated by business analysts from different domains that enables the analysis of time interval data in an on-line analytical manner. In addition, we introduce our query processing, established using a bitmap-based implementation. Finally, we present a performance analysis and discuss the language, the processing as well as the results critically.

References

  1. Agrawal, R. and Srikant, R., 1995. Mining sequential Patterns, Int. Conf. Data Engineering, Taipei, Taiwan, pp. 3-14.
  2. Allen, J. F., 1983. Maintaining knowledge about Temporal Intervals, Communication ACM 26, 11, pp. 832-843.
  3. Böhlen, M. H., Busatto R., Jensen C. S., 1998. Point-versus interval-based temporal data models, 14th Int. Conf. on Data Engineering, Orlando, Florida, USA, 23.-27. Feburary, pp. 192-200.
  4. Chen, Y.-L., Chiang, M.-C., and Ko, M.-T., 2003. Discovering time-interval sequential patterns in sequence databases, Expert Systems with Applications 25(3), pp. 343-354.
  5. Codd, E. F., Codd, S. B., and C. T. Salley, 1993. Providing OLAP (On-Line Analytical Processing) to UserAnalysts: An IT Mandate, E. F. Codd and Associates (sponsored by Arbor Software Corp.).
  6. Höppner, F., Klawonn, F., 2001. Finding informative rules in interval sequences. Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA2001. LNCS, vol. 2189, Springer, Heidelberg, pp. 123-132.
  7. Kimball, R. and Ross, M., 2013. The data warehouse toolkit: The definitive guide to dimensional modeling, 3rd Edition, Wiley Computer Publishing.
  8. Kline, N. and Snodgrass, R. T., 1995. Computing temporal aggregates, 11th Int. Conf. on Data Engineering (ICDE 1995), Taipei, China, 06.-10. March, pp. 222-231.
  9. Koncilia, C., Morzy, T., Wrembel, R., and Eder J., 2014. Interval OLAP: Analyzing Interval Data, Data Warehousing and Knowledge Discovery (DaWaK 2014), Volume 8646, Springer Int., pp. 233-244
  10. Kotsifakos, A., Papapetrou, and P., Athitsos, V., 2013. IBSM: Interval-based Sequence Matching, 13th SIAM Int. Conf. on Data Mining (SDM13), Austin, Texas, USA, 02.-04. May.
  11. Kriegel, H.-P., Pötke, M., and Seidl, T. (2001). ObjectRelational Indexing for General Interval Relationships, 7th Int. Symposium on Spatial and Temporal Databases (SSTD 2001), Los Angeles, California, 12.-15. July, pp. 522-542.
  12. Mazón, J.-N., Lichtenbörger, J., and Trujillo J., 2008. Solving summarizability problems in fact-dimension relationships for multidimensional models, 11th Int. Workshop on Data Warehousing and OLAP (DOLAP 7808). Napa Valley, California, USA, 26.-30. October. pp. 57-64.
  13. Meisen, P., Meisen, T., Recchioni, M., Schilberg, D., Jeschke, S., 2014. Modeling and Processing of Time Interval Data for Data-Driven Decision Support, IEEE Int. Conf. on Systems, Man, and Cybernetics, San Diego, California, USA, 04.-08. October.
  14. Meisen, P., Keng, D., Meisen, T., Recchioni, M., Jeschke, S., 2015. Bitmap-Based On-Line Analytical Processing of Time Interval Data, 12th Int. Conf. on Information Technology. Las Vegas, Nevada, USA, 13.-15. April.
  15. Mörchen, F., 2006. A better tool than Allen's relations for expressing temporal knowledge in interval data, 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Philadelphia, Pennsylvania, USA.
  16. Mörchen, F., 2009. Temporal pattern mining in symbolic time point and time interval data, IEEE Symp. on Computational Intelligence and Data Mining (CIDM 2009), Nashville, Tennessee, USA, 30. March-2. April.
  17. Pedersen, T. B. 2000, Aspects of data modeling and query processing for complex multidimensional data, Ph.D. thesis, Aalborg Universitetsforlag, Aalborg. Publication: Department of Computer Science, Aalborg Univ., no. 4.
  18. Papapetrou, P., Kollios, G., Sclaroff S., and Gunopulos, D., 2005. Discovering Frequent Arrangements of Temporal Intervals, 5th IEEE Int. Conf. on Data Mining (ICDM'05), IEEE Press, pp. 354-361.
  19. Papapetrou, P., Kollios, G., Sclaroff S., and Gunopulos D., 2009. Mining Frequent Arrangements of Temporal Intervals, Knowledge and Information Systems, vol. 21, no. 2, pp. 133-171.
  20. Rafiei, D. and Mendelzon, A. O., 2000. Querying Time Series Data Based on Similarity, IEEE Transactions on Knowledge and Data Engineering, 12(5).
  21. Spofford, G., Harinath, S., Webb, C., Huang, D. H., and Civardi, F., 2006. MDX-Solutions: With Microsoft SQL Server Analysis Services 2005 and Hyperion Essbase, John Wiley & Sons, ISBN 0471748080.
Download


Paper Citation


in Harvard Style

Meisen P., Keng D., Meisen T., Recchioni M. and Jeschke S. (2015). TIDAQL - A Query Language Enabling on-Line Analytical Processing of Time Interval Data . In Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-096-3, pages 54-66. DOI: 10.5220/0005348400540066


in Bibtex Style

@conference{iceis15,
author={Philipp Meisen and Diane Keng and Tobias Meisen and Marco Recchioni and Sabina Jeschke},
title={TIDAQL - A Query Language Enabling on-Line Analytical Processing of Time Interval Data},
booktitle={Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2015},
pages={54-66},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005348400540066},
isbn={978-989-758-096-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 17th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - TIDAQL - A Query Language Enabling on-Line Analytical Processing of Time Interval Data
SN - 978-989-758-096-3
AU - Meisen P.
AU - Keng D.
AU - Meisen T.
AU - Recchioni M.
AU - Jeschke S.
PY - 2015
SP - 54
EP - 66
DO - 10.5220/0005348400540066