Local Deforestation Patterns in Mexico - An Approach using Geographiccally Weighted Regression
Jean Francois Mas, Gabriela Cuevas
2015
Abstract
This study identifies drivers of deforestation in Mexico by applying Geographically Weighted Regression (GWR) models to cartographic and statistical data. A wall-to-wall multitemporal GIS database was constructed incorporating digital data from Global Forest Change (2000-2012); along with ancillary data (road network, settlements, topography, socio-economical parameters and government policies). The database analysis allowed assessing the spatial distribution of deforestation at the municipal level. The statistical analysis of deforestation drivers presented here was focused on the rate of deforestation during the period 2007-2011 as dependent variable. In comparison with the global model, the use of GWR increased the goodness-of-fit (adjusted R2) from 0.46 (global model) to 0.58 (average R2 of GWR local models), with individual GWR models ranging from 0.52 to 0.64. The GWR model highlighted the spatial variation of the relationship between the rate of deforestation and its drivers. Factors identified as having a major impact on deforestation were related to topography (slope), accessibility (road and settlement density) and marginalization. Results indicate that some of the drivers explaining deforestation vary over space, and that the same driver can exhibit opposite effects depending on the region.
References
- Alix-Garcia, J., de Janvry, A., Sadoulet, E. (2005) 'A Tale of Two Communities: Explaining Deforestation in Mexico', World Development, 33(2): pp. 219-235.
- Bivand R., Yu D. (2012) Package 'spgwr', Geographically weighted regression. Available at: http://cran.opensource-solution.org/web/packages/spgwr/spgwr.pdf (Accessed: 12 April 2013)
- Bonilla-Moheno, M., Redo, D. J., Mitchell Aide T., Clark, M. L., Grau, H. R. (2013) 'Vegetation change and land tenure in Mexico: A country-wide analysis', Land Use Policy, 30(1), pp. 355-364.
- Bray, D. B., Duran, E., Ramos, V. H., Mas, J. F., Velázquez, A., McNab, R. B., Barry, D. and Radachowsky, J. (2008) 'Tropical deforestation, community forests, and protected areas in the Maya Forest', Ecology and Society, 13(2), p. 56.
- Bezaury Creel J. E., Torres, J. F., Ochoa-Ochoa, L., Castro Campos, M., Moreno Díaz, N. G. (2011) Bases de datos georeferenciadas de áreas naturales protegidas y otros espacios dedicados y destinados a la conservación y uso sustentable de la biodiversisad en México. The Nature Conservancy.
- CONAPO (2010) 'Índices de marginación por localidad'. Available at: http://www.conapo.gob.mx/es/CONA PO/Indice_de_Marginacion_por_Localidad_2010 (Accessed: 15 April 2013)
- ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
- FAO (2001) 'Global resources assessment', Forestry paper 140.
- Figueroa, F., Sánchez-Cordero, V., Meave, J. A., Trejo, I. (2009) 'Socioeconomic context of land use and land cover change in Mexican biosphere reserves', Environmental Conservation, 36 (3), pp. 180-191.
- Fotheringham, S. A., Brunsdon, C., Charlton, M. (2002) Geographically Weighted Regression: the analysis of spatially varying relationships. John Wiley & Sons.
- García-Barrios, L., Galván-Miyoshi, Y. M., Valdivieso Pérez, I. A., Masera, O. R., Bocco, G., Vandermeer, J. (2009) 'Neotropical forest conservation, agricultural intensification and rural outmigration: The Mexican Experience', BioScience, 59(10), pp. 863-873.
- Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D. , Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O. and Townshend, J. R.G. (2013) 'High-Resolution Global Maps of 21st-Century Forest Cover Change' Science 342 (15 November), pp. 850-53. Available at: http://earthenginepartners.appspot.com/science-2013- global-forest.
- INEGI (2004) 'Carta topográfica escala 1: 25000078. Ed. INEGI, México.
- INEGI (2005) 'Conteo de población y vivienda 2005. Indicadores del censo de Población y vivienda'. Ed. INEGI, México.
- INEGI (2010) 'Censo de población y vivienda 201078. Ed. INEGI, México.
- Klooster, D. (2000) 'Beyond Deforestation: The Social Context of Forest Change in Two Indigenous Communities in Highland Mexico', Journal of Latin American Geography, 26, pp. 47-59.
- Mas, J. F., Velázquez, A., Díaz-Gallegos, J. R., MayorgaSaucedo, R., Alcántara, C., Bocco, G., Castro, R., Fernández, T., Pérez-Vega, A. (2004) 'Assessing land/use cover changes: a nationwide multidate spatial database for Mexico', International Journal of Applied Earth Observation Geoinformatics, 5, pp. 249-261.
- Mennis, J. L. (2006) 'Mapping the results of geographically weighted regression' The Cartographic Journal 43(2), pp. 171-179.
- Pineda-Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M., Franco Plata, R. (2010) 'Exploring the driving forces behind deforestation in the state of Mexico(Mexico) using geographically weighted regression' Applied Geography, 30, pp. 576-591.
- R Development Core Team (2009) 'R: A language and environment for statistical computing', R Foundation for Statistical Computing,Vienna, Austria. Available at: http://www.R-project.org (Accessed 9 April 2013)
- Rudel, T. A., Horowitz, B. (2013) Tropical Deforestation: Small Farmers and Local Clearing in the Ecuadorian Amazon. Columbia University Press.
- SAGARPA (2007-2011) Listas de beneficierios de PROCAMPO y PROGAN.
- Wheeler, D. C. (2007) 'Diagnostic tools and a remedial method for collinearity in geographically weighted regression', Environment and Planning, 39, pp. 2464- 2481.
- Wheeler, D. C. (2012) 'Package 'gwrr', Geographically weighted regression with penalties and diagnostic tools', Austria. Available at: http://cran.rproject.org/web/packages/gwrr/gwrr.pdf (Accessed 9 April 2013).
Paper Citation
in Harvard Style
Mas J. and Cuevas G. (2015). Local Deforestation Patterns in Mexico - An Approach using Geographiccally Weighted Regression . In Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-099-4, pages 54-60. DOI: 10.5220/0005349000540060
in Bibtex Style
@conference{gistam15,
author={Jean Francois Mas and Gabriela Cuevas},
title={Local Deforestation Patterns in Mexico - An Approach using Geographiccally Weighted Regression},
booktitle={Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2015},
pages={54-60},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005349000540060},
isbn={978-989-758-099-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Local Deforestation Patterns in Mexico - An Approach using Geographiccally Weighted Regression
SN - 978-989-758-099-4
AU - Mas J.
AU - Cuevas G.
PY - 2015
SP - 54
EP - 60
DO - 10.5220/0005349000540060