Alternative Approaches to Planning

Otakar Trunda

2015

Abstract

In my PhD. dissertation, I focus on action planning and constrained discrete optimization. I try to introduce novel approaches to the field of single-agent planning by combining standard techniques with meta-heuristic optimization, machine-learning algorithms, hyper-euristics and algorithm selection approaches. Our main goal is to create new and flexible planning algorithms which would be suited for a large variety of real-life problems. Planning is a fundamental and difficult problem in AI and any new results in this area are directly applicable to many other fields. They can be used for single-agent or multi-agent action selection in both competitive or cooperative environment and as we focus on optimization, our techniques are suitable for real-life problems that arise in robotics or transportation.

References

  1. Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finitetime analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256.
  2. Brie, A. H. and Morignot, P. (2005). Genetic planning using variable length chromosomes. In Biundo, S., Myers, K. L., and Rajan, K., editors, ICAPS, pages 320-329. AAAI.
  3. Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. (2008). Monte-carlo tree search: A new framework for game ai. In Proceedings of the 4th Artificial Intelligence for Interactive Digital Entertainment conference (AIIDE), pages 216-217. AAAI Press.
  4. Edelkamp, S. (2006). Automated creation of pattern database search heuristics. In Edelkamp, S. and Lomuscio, A., editors, MoChArt, volume 4428 of Lecture Notes in Computer Science, pages 35-50. Springer.
  5. Edelkamp, S. and Schrdl, S. (2012). Heuristic Search - Theory and Applications. Academic Press.
  6. Genesereth, M. R., Love, N., and Pell, B. (2005). General game playing: Overview of the aaai competition. AI Magazine, 26(2):62-72.
  7. Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory and Practice. Morgan Kaufmann Publishers, Amsterdam.
  8. Hamadi, Y., Monfroy, E., and Saubion, F. (2012). Autonomous search. Springer-Verlag.
  9. Haslum, P., Botea, A., Helmert, M., Bonet, B., and Koenig, S. (2007). Domain-independent construction of pattern database heuristics for cost-optimal planning. In AAAI, pages 1007-1012. AAAI Press.
  10. Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstractions: What's the difference anyway? In Gerevini, A., Howe, A. E., Cesta, A., and Refanidis, I., editors, ICAPS. AAAI.
  11. Hoffmann, J. (2011). Where Ignoring Delete Lists Works, Part II: Causal Graphs. In 21st International Conference on Automated Planning and Scheduling, Freiburg, Allemagne.
  12. Kocsis, L. and Szepesvári, C. (2006). Bandit based montecarlo planning. In Proceedings of the 15th European Conference on Machine Learning (ECML), pages 283-293. Springer Verlag.
  13. Korf, R. E., Reid, M., and Edelkamp, S. (2001). Time complexity of iterative-deepening-a* . Artif. Intell., 129(1-
  14. Nakhost, H. and Müller, M. (2009). Monte-carlo exploration for deterministic planning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1766-1771.
  15. Olaya, A., L ópez, C., and Jiménez, S. (visited December 10, 2014). International planning competition. [online].
  16. Pommerening, F. and Helmert, M. (2013). Incremental lmcut. In Borrajo, D., Kambhampati, S., Oddi, A., and Fratini, S., editors, ICAPS. AAAI.
  17. Pommerening, F., Rger, G., and Helmert, M. (2013). Getting the most out of pattern databases for classical planning. In Rossi, F., editor, IJCAI. IJCAI/AAAI.
  18. Pommerening, F., Rger, G., Helmert, M., and Bonet, B. (2014). Lp-based heuristics for cost-optimal planning. In ICAPS. AAAI.
  19. Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms (2. ed.). Springer.
  20. Rothlauf, F. (2011). Design of Modern Heuristics. Natural Computing Series. Springer.
  21. Schadd, M. P. D., Winands, M. H. M., van den Herik, H. J., Chaslot, G. M. J.-B., and Uiterwijk, J. W. H. M. (2008). Single-player monte-carlo tree search. In Proceedings of the 6th international conference on Computers and Games (CG 7808), volume 5131 of LNCS, pages 1-12. Springer Verlag.
  22. Sebald, A. V. and Chellapilla, K. (1998). On making problems evolutionarily friendly - part 2: Evolving the most convenient coordinate systems within which to pose (and solve) the given problem. In Porto, V. W., Saravanan, N., Waagen, D. E., and Eiben, A. E., editors, Evolutionary Programming, volume 1447 of Lecture Notes in Computer Science, pages 281-290. Springer.
  23. Shi, L. and Rasheed, K. (2010). A survey of fitness approximation methods applied in evolutionary algorithms. In Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Expensive Optimization Problems, volume 2 of Adaptation Learning and Optimization, pages 3-28. Springer Berlin Heidelberg.
  24. Simon, D. (2013). Evolutionary Optimization Algorithms. Wiley.
  25. Solano, M. and Jonyer, I. (2007). Performance analysis of evolutionary search with a dynamic restart policy. In Wilson, D. and Sutcliffe, G., editors, FLAIRS Conference, pages 186-187. AAAI Press.
  26. Toropila, D., Dvo?rák, F., Trunda, O., Hanes, M., and Barták, R. (2012). Three approaches to solve the petrobras challenge: Exploiting planning techniques for solving real-life logistics problems. In Proceedings of 24th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 191-198. IEEE Conference Publishing Services.
  27. Trunda, O. (2013). Monte carlo techniques in planning. Master's thesis, Faculty of Mathematics and Physics, Charles University in Prague.
  28. Trunda, O. (2014). Automatic creation of pattern databases in planning. In Kurková, V., editor, Proceedings of 14th conference ITAT 2014 Workshops and Posters, volume 2, pages 85-92. Institute of Computer Science, AS CR.
  29. Trunda, O. and Barták, R. (2013). Using monte carlo tree search to solve planning problems in transportation domains. In Castro, F., Gelbukh, A. F., and Gonzlez, M., editors, MICAI (2), volume 8266 of Lecture Notes in Computer Science, pages 435-449. Springer.
  30. Trunda, O. and Barták, R. (2014). Determining a proper initial configuration of red-black planning by machine learning. In Proceedings of the International Workshop on Meta-learning and Algorithm Selection, volume 1201, pages 51-52. CEUR Workshop Proceedings.
  31. Vaquero, T. S., Costa, G., Tonidandel, F., Igreja, H., Silva, J. R., and Beck, C. (2012). Planning and scheduling ship operations on petroleum ports and platform. In Proceedings of the ICAPS Scheduling and Planning Applications Workshop (SPARK), pages 8-16.
  32. Westerberg, C. H. and Levine, J. (2000). “genplan”: Combining genetic programming and planning. In Garagnani, M., editor, 19th Workshop of the UK Planning and Scheduling Special Interest Group (PLANSIG 2000), The Open University, Milton Keynes, UK.
Download


Paper Citation


in Harvard Style

Trunda O. (2015). Alternative Approaches to Planning . In Doctoral Consortium - DCAART, (ICAART 2015) ISBN , pages 25-34


in Bibtex Style

@conference{dcaart15,
author={Otakar Trunda},
title={Alternative Approaches to Planning},
booktitle={Doctoral Consortium - DCAART, (ICAART 2015)},
year={2015},
pages={25-34},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCAART, (ICAART 2015)
TI - Alternative Approaches to Planning
SN -
AU - Trunda O.
PY - 2015
SP - 25
EP - 34
DO -