Automatic Generation of Learning Path
Claudia Perez-Martinez, Gabriel Lopez Morteo, Magally Martinez Reyes, Alexander Gelbukh
2015
Abstract
This paper presents a proposal to automatically generate a learning path. The proposal method apply Natural Language Processing techniques, it uses as knowledge source an ontological view from Wikipedia, taking advantage of its broad domain of concepts. The results has been validated comparing them with the teaching opinion. It is expected that the learning path built can be an useful input to instructional design processes considering them before to know the student profile.
References
- UNESCO. 2005. Hacia las sociedades del conocimiento.
- Brusilovsky, P. (1999). Adaptive and Intelligent Technologies for Web-based Education. Special Issue on Intelligent Systems and Teleteaching, Künstliche.
- Brusilovsky, P. & Peylo, C. 2003. Adaptive and Intelligent Web-based Educational Systems. Int. J. Artif. Intell.
- Ed. 13, 2-4. 159-172.
- Christopher D., Manning and Hinrich Schütze . (1999).
- Indurkhya, N. & Damerau, F. (2010). Handbook of Natural Language Processing (2nd ed.). Chapman & Hall/CRC.
- (2009). Mining Meaning from Wikipedia. Extraído el 19 de enero de http://arxiv.org/abs/0809.4530.
- Katuk, N.; Hokyoung Ryu. (2010). Finding an optimal learning path in dynamic curriculum sequencing with flow experience. Computer Applications and Industrial Electronics (ICCAIE), 2010 International Conference on, vol., no., pp.227,232, 5-8.
- Witten, I., Frank, E., Hall, M. (2011). Data Mining: Practical Machine Learning Tools and Techniques.
- 3nd Edition, Morgan Kaufmann, San Francisco.
- Theodoridis, S., Koutroumbas, K. (2006). Pattern Recognition, Third Edition. Academic Press, Inc., Orlando, FL, USA.
- Lau, R., Yen, N., Li, F., and Wah, B. (2014). Recent development in multimedia e-learning technologies.
- World Wide Web 17, 2. 189-198.
- Chih-Ming Chen. (2008). Intelligent web-based learning system with personalized learning path guidance, Computers & Education, Volume 51, Issue 2, September 2008, Pages 787-814, ISSN 0360-1315.
- G. Durand et. al. (2013). Graph theory based model for learning path recommendation, Inform. Sci. (2013).
- Pirrone, R. & Pilato, G. & Rizzo, R. & Russo, G. (2005).
- Lecture Notes in Computer Science. Springer Berlin Heidelberg. V 3673.
- Chen, C., Lee, H, and Chen,Y. (2005). Personalized elearning system using Item Response Theory. Comput.
- Educ. 44, 3 (April 2005), 237-255.
- Huang, M., Huang, H, and Chen, M. (2007). Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Syst. Appl. 33. 3. 551-564.
Paper Citation
in Harvard Style
Perez-Martinez C., Lopez Morteo G., Martinez Reyes M. and Gelbukh A. (2015). Automatic Generation of Learning Path . In Doctoral Consortium - DCAART, (ICAART 2015) ISBN , pages 35-39
in Bibtex Style
@conference{dcaart15,
author={Claudia Perez-Martinez and Gabriel Lopez Morteo and Magally Martinez Reyes and Alexander Gelbukh},
title={Automatic Generation of Learning Path},
booktitle={Doctoral Consortium - DCAART, (ICAART 2015)},
year={2015},
pages={35-39},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}
in EndNote Style
TY - CONF
JO - Doctoral Consortium - DCAART, (ICAART 2015)
TI - Automatic Generation of Learning Path
SN -
AU - Perez-Martinez C.
AU - Lopez Morteo G.
AU - Martinez Reyes M.
AU - Gelbukh A.
PY - 2015
SP - 35
EP - 39
DO -