Visual Recommendations for Scientific and Cultural Content

Eduardo Veas, Belgin Mutlu, Cecilia di Sciascio, Gerwald Tschinkel, Vedran Sabol

2015

Abstract

Supporting individuals who lack experience or competence to evaluate an overwhelming amout of information such as from cultural, scientific and educational content makes recommender system invaluable to cope with the information overload problem. However, even recommended information scales up and users still need to consider large number of items. Visualization takes a foreground role, letting the user explore possibly interesting results. It leverages the high bandwidth of the human visual system to convey massive amounts of information. This paper argues the need to automate the creation of visualizations for unstructured data adapting it to the user’s preferences. We describe a prototype solution, taking a radical approach considering both grounded visual perception guidelines and personalized recommendations to suggest the proper visualization.

References

  1. Bertin, J. (1983). Semiology of Graphics. University of Wisconsin Press.
  2. Granitzer, M., Seifert, C., Russegger, S., and Tochtermann, K. (2013). Unfolding cultural, educational and scientific long-tail content in the web. In UMAP Workshops.
  3. Kagie, M., van Wezel, M. C., and Groenen, P. J. F. (2011). Map based visualization of product catalogs. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors, Recommender Systems Handbook, pages 547- 576. Springer.
  4. Konstan, J. A. and Riedl, J. (2012). Recommender systems: From algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1-2):101-123.
  5. Lex, A., Streit, M., Schulz, H., Partl, C., Schmalstieg, D., Park, P. J., and Gehlenborg, N. (2012). StratomeX: visual analysis of Large-Scale heterogeneous genomics data for cancer subtype characterization. Computer Graphics Forum (EuroVis 7812), 31(3):1175-1184.
  6. Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Trans. Graph., 5(2):110-141.
  7. Mackinlay, J., Hanrahan, P., and Stolte, C. (2007). Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics, 13(6):1137-1144.
  8. Munzner, T. (2011). Applying information visualization principles to biological network displays. volume 7865, pages 78650D-78650D-13.
  9. Mutlu, B., Hoefler, P., Tschinkel, G., Veas, E., Sabol, V., Stegmaier, F., and Granitzer, M. (2014). Suggesting visualizations for published data. In Proceedings of the 5th International Conference on Information Visualization Theory and Applications, IVAPP.
  10. Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., and Fellner, D. (2013). Adaptive semantic visualization for bibliographic entries. In Bebis, G., Boyle, R., Voigt, M. et al. (2012). Context-aware recommendation of visulization components. In The Fourth International Conference on Information, Process, and Knowldege Management.
Download


Paper Citation


in Harvard Style

Veas E., Mutlu B., di Sciascio C., Tschinkel G. and Sabol V. (2015). Visual Recommendations for Scientific and Cultural Content . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 256-261. DOI: 10.5220/0005352802560261


in Bibtex Style

@conference{ivapp15,
author={Eduardo Veas and Belgin Mutlu and Cecilia di Sciascio and Gerwald Tschinkel and Vedran Sabol},
title={Visual Recommendations for Scientific and Cultural Content},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},
year={2015},
pages={256-261},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005352802560261},
isbn={978-989-758-088-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - Visual Recommendations for Scientific and Cultural Content
SN - 978-989-758-088-8
AU - Veas E.
AU - Mutlu B.
AU - di Sciascio C.
AU - Tschinkel G.
AU - Sabol V.
PY - 2015
SP - 256
EP - 261
DO - 10.5220/0005352802560261