Convex Hull Brushing in Scatter Plots - Multi-dimensional Correlation Analysis
Miguel Nunes, Kresimir Matkovic, Katja Bühler
2015
Abstract
Interactive Visual Analysis has been widely used for the reason that it allows users to investigate highly complex data in coordinated multiple views, showing different perspectives over data. In order to relate data, multiple techniques of brushing have been introduced. This work extends the state of the art by introducing the Convex Hull (CH) Brush, which is a new way of selecting and interpreting high dimensional data in scatter plot (SP) views. By using a combination of brushes through linked views, the CH-Brush allows the selection and clustering of values that are not typically defined by SP ranges, in spite of sharing similarities. In CHBrushing is also able to visually report the existence of correlation between variables. Furthermore, we discuss CH-Brushing sensitivity and the application of smoothness. We use synthetic data to support our rationale and clarify the intrinsic meanings of CH-Brushing in scatter plots. We also report on the first experience on using the CH-Brush in a real-world medical case.
References
- Andrew, A. M. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9(5):216-219.
- Becker, R. A. and Cleveland, W. S. (1987). Brushing scatterplots. Technometrics, 29(2):127-142.
- Doleisch, H., Gasser, M., and Hauser, H. (2003). Interactive feature specification for focus+ context visualization of complex simulation data. In Proceedings of the symposium on Data visualisation 2003, pages 239-248. Eurographics Association.
- Doleisch, H. and Hauser, H. (2002). Smooth brushing for focus+context visualization of simulkation data in 3d.
- Elmqvist, N., Dragicevic, P., and Fekete, J.-D. (2008). Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. Visualization and Computer Graphics, IEEE Transactions on, 14(6):1539-1148.
- Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. SIGKDD Explor. Newsl., 4(1):65-75.
- Fisherkeller, M. A., Friedman, J. H., and Tukey, J. W. (1988). Prim-9: An interactive multi-dimensional data display and analysis system. In In Dynamic Graphics for Statistics, pages 111-120.
- Inselberg, A. (2009). Parallel coordinates. Springer.
- Konyha, Z., Matkovic, K., Gracanin, D., Jelovic, M., and Hauser, H. (2006). Interactive visual analysis of families of function graphs. Visualization and Computer Graphics, IEEE Transactions on, 12(6):1373-1385.
- Li, J., Martens, J.-B., and van Wijk, J. J. (2010). Judging correlation from scatterplots and parallel coordinate plots. Information Visualization, 9(1):13-30.
- Martin, A. R. and Ward, M. O. (1995). High dimensional brushing for interactive exploration of multivariate data. In Proceedings of the 6th Conference on Visualization'95, page 271. IEEE Computer Society.
- Martínez-Gómez, E., Richards, M. T., and Richards, D. S. P. (2014). Distance correlation methods for discovering associations in large astrophysical databases. The Astrophysical Journal, 781(1):39.
- Matkovic, K., Freiler, W., Gracanin, D., and Hauser, H. (2008). Comvis: A coordinated multiple views system for prototyping new visualization technology. In Information Visualisation, 2008. IV 7808. 12th International Conference, pages 215-220.
- Moreira, A. and Santos, M. Y. (2007). Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. Proceedings of the 2nd International Conference on Computer Graphics Theory and Applications.
- Nunes, M., Rowland, B., Schlachter, M., Ken, S., Matkovic, K., Laprie, A., and B ühler, K. (2014). An integrated visual analysis system for fusing mr spectroscopy and multi-modal radiology imaging. In Proceedings of IEEE VAST 2014.
- Oeltze, S., Doleisch, H., Hauser, H., and Weber, G. (2012). Interactive visual analysis of scientific data. Tutorial at the IEEE VisWeek 2012.
- Pratt, J., Busse, A., Mueller, W.-C., Chapman, S., and Watkins, N. (2014). Anomalous dispersion of lagrangian particles in local regions of turbulent flows revealed by convex hull analysis. arXiv preprint arXiv:1408.5706.
- Rensink, R. A. and Baldridge, G. (2010). The perception of correlation in scatterplots. volume 29, pages 1203- 1210. Wiley Online Library.
- Roberts, J. C. (2007). State of the art: Coordinated & multiple views in exploratory visualization. In Coordinated and Multiple Views in Exploratory Visualization, 2007. CMV'07. Fifth International Conference on, pages 61-71. IEEE.
- Sainath, T. N., Nahamoo, D., Kanevsky, D., Ramabhadran, B., and Shah, P. (2011). A convex hull approach to sparse representations for exemplar-based speech recognition. In Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pages 59-64. IEEE.
- Sedlmair, M., Isenberg, P., Baur, D., Mauerer, M., Pigorsch, C., and Butz, A. (2011). Cardiogram: visual analytics for automotive engineers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1727-1736. ACM.
- Sedlmair, M., Munzner, T., and Tory, M. (2013). Empirical guidance on scatterplot and dimension reduction technique choices. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2634-2643.
- Wang, B., Ruchikachorn, P., and Mueller, K. (2013). Sketchpadn-d: WYDIWYG sculpting and editing in high-dimensional space. CoRR, abs/1308.0762.
- Wilderjans, T. F., Ceulemans, E., and Meers, K. (2013). Chull: A generic convex-hull-based model selection method. Behavior research methods, 45(1):1-15.
- Wilkinson, L., Anand, A., and Grossman, R. (2006). Highdimensional visual analytics: Interactive exploration guided by pairwise views of point distributions. Visualization and Computer Graphics, IEEE Transactions on, 12(6):1363-1372.
Paper Citation
in Harvard Style
Nunes M., Matkovic K. and Bühler K. (2015). Convex Hull Brushing in Scatter Plots - Multi-dimensional Correlation Analysis . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 182-189. DOI: 10.5220/0005356501820189
in Bibtex Style
@conference{ivapp15,
author={Miguel Nunes and Kresimir Matkovic and Katja Bühler},
title={Convex Hull Brushing in Scatter Plots - Multi-dimensional Correlation Analysis},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},
year={2015},
pages={182-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005356501820189},
isbn={978-989-758-088-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - Convex Hull Brushing in Scatter Plots - Multi-dimensional Correlation Analysis
SN - 978-989-758-088-8
AU - Nunes M.
AU - Matkovic K.
AU - Bühler K.
PY - 2015
SP - 182
EP - 189
DO - 10.5220/0005356501820189