Querying Open Street Map with XQuery

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón

2015

Abstract

In this paper we present a library for querying Open Street Map (OSM) with XQuery. This library is based on the well-known spatial operators defined by Clementini and Egenhofer, providing a repertoire of XQuery functions which encapsulate the search on the XML document representing a layer of OSM, and make the definition of queries on top of OSM layers easy. In essence, the library provides a repertoire of OSM Operators for points and lines which, in combination with Higher Order facilities of XQuery, facilitates the composition of queries and the definition of keyword based search geo-localized queries. OSM data are indexed by an R-tree structure, in which points and lines are enclosed by Minimum Bounding Rectangles (MBRs), in order to get shorter answer time.

References

  1. Alkhateeb, F., Baget, J.-F., and Euzenat, J. (2011). Extending SPARQL with regular expression patterns (for querying RDF). Web Semantics: Science, Services and Agents on the World Wide Web, 7(2):57-73.
  2. Atzori, M. (2014). Toward the Web of Functions: Interoperable Higher-Order Functions in SPARQL. In The Semantic Web-ISWC 2014, pages 406-421. Springer.
  3. Bamford, R., Borkar, V., Brantner, M., Fischer, P. M., Florescu, D., Graf, D., Kossmann, D., Kraska, T., Muresan, D., Nasoi, S., et al. (2009). XQuery reloaded. Proceedings of the VLDB Endowment, 2(2):1342- 1353.
  4. Battle, R. and Kolas, D. (2012). Enabling the geospatial semantic web with Parliament and GeoSPARQL. Semantic Web, 3(4):355-370.
  5. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., and Siméon, J. (2010). XML path language (XPath) 2.0. W3C.
  6. Boucelma, O. and Colonna, F. (2004). GQuery: a Query Language for GML. In Proc. of the 24th Urban Data Management Symposium, pages 27-29.
  7. Clementini, E. and Di Felice, P. (2000). Spatial operators. ACM SIGMOD Record, 29(3):31-38.
  8. Egenhofer, M. J. (1994). Spatial SQL: A Query and Presentation Language. IEEE Trans. Knowl. Data Eng., 6(1):86-95.
  9. Egenhofer, M. J. (2002). Toward the semantic geospatial web. In Proceedings of the 10th ACM international symposium on Advances in geographic information systems, pages 1-4. ACM.
  10. Eiter, T., Schneider, P., S?imkus, M., and Xiao, G. (2014). Using OpenStreetMap Data to Create Benchmarks for Description Logic Reasoners. In Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014), pages 51-57. CEUR Workshop Proceedings, Vol-1207.
  11. Garbis, G., Kyzirakos, K., and Koubarakis, M. (2013). Geographica: A Benchmark for Geospatial RDF Stores. In The Semantic Web-ISWC 2013, pages 343-359. Springer.
  12. Grun, C. (2015). BaseX. The XML Database. http:// basex.org.
  13. Hadjieleftheriou, M., Manolopoulos, Y., Theodoridis, Y., and Tsotras, V. J. (2008). R-Trees-A Dynamic Index Structure for Spatial Searching. In Encyclopedia of GIS, pages 993-1002. Springer.
  14. Haklay, M. and Weber, P. (2008). Openstreetmap: Usergenerated street maps. Pervasive Computing, IEEE, 7(4):12-18.
  15. Huang, C.-H., Chuang, T.-R., Deng, D.-P., and Lee, H.- M. (2009). Building GML-native web-based geographic information systems. Computers & Geosciences, 35(9):1802-1816.
  16. Kay, M. (2008). Ten reasons why saxon xquery is fast. IEEE Data Eng. Bull., 31(4):65-74.
  17. Kolas, D. (2008). A Benchmark for Spatial Semantic Web Systems. In International Workshop on Scalable Semantic Web Knowledge Base Systems.
  18. Koubarakis, M., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C., and Sioutis, M. (2012). Data Models and Query Languages for Linked Geospatial Data. In Reasoning Web. Semantic Technologies for Advanced Query Answering, pages 290-328. Springer.
  19. Koubarakis, M. and Kyzirakos, K. (2010). Modeling and querying metadata in the semantic sensor web: The model stRDF and the query language stSPARQL. In The semantic web: research and applications, pages 425-439. Springer.
  20. Li, Y., Li, J., and Zhou, S. (2004). GML Storage: A Spatial Database Approach. In Wang, S., Yang, D., Tanaka, K., Grandi, F., Zhou, S., Mangina, E. E., Ling, T. W., Song, I.-Y., Guan, J., and Mayr, H. C., editors, ER (Workshops), volume 3289 of Lecture Notes in Computer Science, pages 55-66. Springer.
  21. Meier, W. (2003). exist: An open source native xml database. In Web, Web-Services, and Database Systems, pages 169-183. Springer.
  22. Perry, M., Jain, P., and Sheth, A. P. (2011). SPARQLST: Extending SPARQL to support spatiotemporal queries. In Geospatial semantics and the semantic web, pages 61-86. Springer.
  23. Robie, J., Chamberlin, D., Dyck, M., and Snelson, J. (2014). XQuery 3.0: An XML query language. W3C.
  24. Shekhar, S. and Xiong, H. (2008). Java topology suite (jts). In Encyclopedia of GIS, pages 601-601. Springer.
  25. Stadler, C., Lehmann, J., Höffner, K., and Auer, S. (2012). Linkedgeodata: A core for a web of spatial open data. Semantic Web, 3(4):333-354.
Download


Paper Citation


in Harvard Style

Almendros-Jiménez J. and Becerra-Terón A. (2015). Querying Open Street Map with XQuery . In Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-099-4, pages 61-71. DOI: 10.5220/0005365500610071


in Bibtex Style

@conference{gistam15,
author={Jesús M. Almendros-Jiménez and Antonio Becerra-Terón},
title={Querying Open Street Map with XQuery},
booktitle={Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2015},
pages={61-71},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005365500610071},
isbn={978-989-758-099-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Querying Open Street Map with XQuery
SN - 978-989-758-099-4
AU - Almendros-Jiménez J.
AU - Becerra-Terón A.
PY - 2015
SP - 61
EP - 71
DO - 10.5220/0005365500610071