A Cloud-based Data Analysis Framework for Object Recognition
Rezvan Pakdel, John Herbert
2015
Abstract
This paper presents a Cloud-based framework using parallel data processing to identify and recognize an object from an image. Images contain a massive amount of information. Features such as shape, corner, color, and edge can be extracted from images. These features can be used to recognize an object. In a Cloud-based data analytics framework, feature detection algorithms can be done in parallel to get the result faster in comparison to a single machine. This study provides a Cloud-based architecture as a solution for large-scale datasets to decrease processing time and save hardware costs. The evaluation results indicate that the proposed approach can robustly identify and recognize objects in images.
References
- Andrew and Brady, M. (2004). An Affine Invariant Salient Region Detector. In European Conference on Computer Vision, pages 228-241.
- Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape matching and object recognition using low distortion correspondence. In In CVPR, pages 26-33.
- Choras, R. S. (2007). Image feature extraction techniques and their applications for cbir and biometrics systems. International Journal of Biology and Biomedical Engineering.
- Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in pictures. Commun. ACM, 15(1):11-15.
- Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In In CVPR, pages 264-271.
- Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud Computing and Grid Computing 360-Degree Compared. 2008 Grid Computing Environments Workshop, pages 1-10.
- Han, L., Saengngam, T., and van Hemert, J. (2010). Accelerating data-intensive applications: a cloud computing approach image pattern recognition tasks. In The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences.
- Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001). 3d object recognition from range images using local feature histograms. In Proceedings of CVPR 2001, pages 394-399.
- Korman, S., Reichman, D., Tsur, G., and Avidan, S. (2013). Fast-match: Fast affine template matching. In CVPR'13, pages 2331-2338.
- K.Velmurugan and Baboo, L. D. S. (2011). Article: Image retrieval using harris corners and histogram of oriented gradients. International Journal of Computer Applications, 24(7):6-10. Full text available.
- Lisin, D. A., Mattar, M. A., Blaschko, M. B., Benfield, M. C., and Learned-miller, E. G. (2005). Combining local and global image features for object class recognition. In In Proceedings of the IEEE CVPR Workshop on Learning in Computer Vision and Pattern Recognition, pages 47-55.
- L.S.Kmiecik (2013). Cloudcentered,smartphonebasedlongtermhumanac- tivity recognition solution. IEEE Transactions on Image Processing.
- Malik, J., Dahiya, R., and Sainarayanan, G. (2011). Article: Harris operator corner detection using sliding window method. International Journal of Computer Applications, 22(1):28-37. Full text available.
- Nadernejad, E., Sharifzadeh, S., and Hassanpour, H. (2008). Edge detection techniques: Evaluations and comparison. Applied Mathematical Sciences, 2(31):1507- 1520.
- Patil, N. K., Yadahalli, R. M., and Pujari, J. (2011). Article: Comparison between hsv and ycbcr color model color-texture based classification of the food grains. International Journal of Computer Applications, 34(4):51-57. Full text available.
- Rosten, E., Porter, R., and Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell., 32(1):105-119.
- S.Arivazhagan1, R.Newlin Shebiah1, S. N. L. (Oct 2010). Fruit recognition using color and texture features bibtex. Journal of Emerging Trends in Computing and Information Sciences.
- Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 19(5):530-535.
- Shotton, J. (2005). Contour-based learning for object detection. In In Proc. ICCV, pages 503-510.
- Torralba, A., Murphy, K. P., and Freeman, W. T. (2010). Using the forest to see the trees: exploiting context for visual object detection and localization. Commun. ACM, 53(3):107-114.
- Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Yang, M.-H. (2009). Object recognition. In LIU, L. and ZSU, M., editors, Encyclopedia of Database Systems, pages 1936-1939. Springer US.
- Zhang, D. and Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1):1 - 19.
Paper Citation
in Harvard Style
Pakdel R. and Herbert J. (2015). A Cloud-based Data Analysis Framework for Object Recognition . In Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-104-5, pages 79-86. DOI: 10.5220/0005409900790086
in Bibtex Style
@conference{closer15,
author={Rezvan Pakdel and John Herbert},
title={A Cloud-based Data Analysis Framework for Object Recognition},
booktitle={Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},
year={2015},
pages={79-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005409900790086},
isbn={978-989-758-104-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - A Cloud-based Data Analysis Framework for Object Recognition
SN - 978-989-758-104-5
AU - Pakdel R.
AU - Herbert J.
PY - 2015
SP - 79
EP - 86
DO - 10.5220/0005409900790086