A Cloud-based Data Analysis Framework for Object Recognition

Rezvan Pakdel, John Herbert

2015

Abstract

This paper presents a Cloud-based framework using parallel data processing to identify and recognize an object from an image. Images contain a massive amount of information. Features such as shape, corner, color, and edge can be extracted from images. These features can be used to recognize an object. In a Cloud-based data analytics framework, feature detection algorithms can be done in parallel to get the result faster in comparison to a single machine. This study provides a Cloud-based architecture as a solution for large-scale datasets to decrease processing time and save hardware costs. The evaluation results indicate that the proposed approach can robustly identify and recognize objects in images.

References

  1. Andrew and Brady, M. (2004). An Affine Invariant Salient Region Detector. In European Conference on Computer Vision, pages 228-241.
  2. Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape matching and object recognition using low distortion correspondence. In In CVPR, pages 26-33.
  3. Choras, R. S. (2007). Image feature extraction techniques and their applications for cbir and biometrics systems. International Journal of Biology and Biomedical Engineering.
  4. Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in pictures. Commun. ACM, 15(1):11-15.
  5. Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In In CVPR, pages 264-271.
  6. Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud Computing and Grid Computing 360-Degree Compared. 2008 Grid Computing Environments Workshop, pages 1-10.
  7. Han, L., Saengngam, T., and van Hemert, J. (2010). Accelerating data-intensive applications: a cloud computing approach image pattern recognition tasks. In The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences.
  8. Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001). 3d object recognition from range images using local feature histograms. In Proceedings of CVPR 2001, pages 394-399.
  9. Korman, S., Reichman, D., Tsur, G., and Avidan, S. (2013). Fast-match: Fast affine template matching. In CVPR'13, pages 2331-2338.
  10. K.Velmurugan and Baboo, L. D. S. (2011). Article: Image retrieval using harris corners and histogram of oriented gradients. International Journal of Computer Applications, 24(7):6-10. Full text available.
  11. Lisin, D. A., Mattar, M. A., Blaschko, M. B., Benfield, M. C., and Learned-miller, E. G. (2005). Combining local and global image features for object class recognition. In In Proceedings of the IEEE CVPR Workshop on Learning in Computer Vision and Pattern Recognition, pages 47-55.
  12. L.S.Kmiecik (2013). Cloudcentered,smartphonebasedlongtermhumanac- tivity recognition solution. IEEE Transactions on Image Processing.
  13. Malik, J., Dahiya, R., and Sainarayanan, G. (2011). Article: Harris operator corner detection using sliding window method. International Journal of Computer Applications, 22(1):28-37. Full text available.
  14. Nadernejad, E., Sharifzadeh, S., and Hassanpour, H. (2008). Edge detection techniques: Evaluations and comparison. Applied Mathematical Sciences, 2(31):1507- 1520.
  15. Patil, N. K., Yadahalli, R. M., and Pujari, J. (2011). Article: Comparison between hsv and ycbcr color model color-texture based classification of the food grains. International Journal of Computer Applications, 34(4):51-57. Full text available.
  16. Rosten, E., Porter, R., and Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell., 32(1):105-119.
  17. S.Arivazhagan1, R.Newlin Shebiah1, S. N. L. (Oct 2010). Fruit recognition using color and texture features bibtex. Journal of Emerging Trends in Computing and Information Sciences.
  18. Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 19(5):530-535.
  19. Shotton, J. (2005). Contour-based learning for object detection. In In Proc. ICCV, pages 503-510.
  20. Torralba, A., Murphy, K. P., and Freeman, W. T. (2010). Using the forest to see the trees: exploiting context for visual object detection and localization. Commun. ACM, 53(3):107-114.
  21. Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  22. Yang, M.-H. (2009). Object recognition. In LIU, L. and ZSU, M., editors, Encyclopedia of Database Systems, pages 1936-1939. Springer US.
  23. Zhang, D. and Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1):1 - 19.
Download


Paper Citation


in Harvard Style

Pakdel R. and Herbert J. (2015). A Cloud-based Data Analysis Framework for Object Recognition . In Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-758-104-5, pages 79-86. DOI: 10.5220/0005409900790086


in Bibtex Style

@conference{closer15,
author={Rezvan Pakdel and John Herbert},
title={A Cloud-based Data Analysis Framework for Object Recognition},
booktitle={Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},
year={2015},
pages={79-86},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005409900790086},
isbn={978-989-758-104-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - A Cloud-based Data Analysis Framework for Object Recognition
SN - 978-989-758-104-5
AU - Pakdel R.
AU - Herbert J.
PY - 2015
SP - 79
EP - 86
DO - 10.5220/0005409900790086