ASHYI-EDU: Applying Dynamic Adaptive Planning in a Virtual Learning Environment

Jaime Pavlich-Mariscal, Yolima Uribe, Luisa Fernanda Barrera León, Nadia Alejandra Mejia-Molina, Angela Carrillo-Ramos, Alexandra Pomares Quimbaya, Monica Brijaldo, Martha Sabogal, Rosa Maria Vicari, Hervé Martin

2015

Abstract

Activity planning is an essential element in the teaching-learning process, since it can ensure that adequate activities are utilized to convey the information to students. The common practice in course planning is that the teacher selects the same set of activities for every student in the classroom. However this does not address the students’ heterogeneity in learning styles, knowledge, and personality. To address this problem, this paper proposes ASHYI-EDU, a Virtual Learning Environment (VLE) with dynamic adaptive planning. ASHYI- EDU is able to capture distinctive student characteristics and provide students with plans that are especially tailored for their particular characteristics. This paper also presents an ongoing case study that utilizes ASHYI- EDU in a university course.

References

  1. Alonso, C., Gallego, D., and Garcia, J. (2009). CHAEA - estilos de aprendizaje. http://www.estilosdeaprendizaje.es. Last accessed: 2013-10-17.
  2. AnousouyaDevi, M., Uma, V., and Aghila, G. (2012). Temporal planning with reference event based temporal relations. In 2012 International Conference on Recent Trends In Information Technology (ICRTIT), pages 548-552.
  3. Apereo-Foundation (2014). Sakai. https://sakaiproject.org/. Last accessed: 2013-09-24.
  4. Bahmani, A., Sedigh, S., and Hurson, A. (2011). Contextaware recommendation algorithms for the percepolis personalized education platform. In Frontiers in Education Conference (FIE), 2011, pages F4E-1-F4E-6.
  5. Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial Intelligence, 90(1- 2):281-300.
  6. Candillier, L., Meyer, F., and Fessant, F. (2008). Designing specific weighted similarity measures to improve collaborative filtering systems. In Perner, P., editor, Advances in Data Mining. Medical Applications, ECommerce, Marketing, and Theoretical Aspects, number 5077 in Lecture Notes in Computer Science, pages 242-255. Springer Berlin Heidelberg.
  7. Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., and Martin, H. (2007). Knowledge management for adapted information retrieval in ubiquitous environments. In Filipe, J., Cordeiro, J., and Pedrosa, V., editors, Web Information Systems and Technologies, number 1 in Lecture Notes in Business Information Processing, pages 84-96. Springer Berlin Heidelberg.
  8. Coles, A., Coles, A., Fox, M., and Long, D. (2010). Forward-Chaining Partial-Order Planning.
  9. Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approach to the application of theorem proving to problem solving. Artificial intelligence, 2(3):189-208.
  10. Geib, C. W. and Goldman, R. P. (2009). A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence, 173(11):1101-1132.
  11. Guoqi, X., Jun, P., Xiaoyong, Z., and Kuo-Chi, L. (2010). A dynamic task planning based on task subcontracting and dynamic re-decomposition. In Control Conference (CCC), 2010 29th Chinese, pages 4518-4523.
  12. Jaime Pavlich-Mariscal, Yolima Uribe, L. F. B.-L. N. A. M.- M. A. C.-R. A. P. Q. R. M. V. R. F.-G. S. B. (2015). An Architecture for Dynamic and Adaptive User Activity Planning Systems. In Webist.
  13. Johnson, P. A. and Sieber, R. (2009). Agent-based modelling: A dynamic scenario planning approach to tourism PSS. In Geertman, D. S. and Stillwell, P. J., editors, Planning Support Systems Best Practice and New Methods, number 95 in The GeoJournal Library, pages 211-226. Springer Netherlands.
  14. Li, S., Li, G., and Chen, Y. (2008a). A study on information push in personalized education system. In International Symposium on Knowledge Acquisition and Modeling, 2008. KAM 7808, pages 534-537.
  15. Li, S., Li, G., and Chen, Y. (2008b). A study on information push in personalized education system. In International Symposium on Knowledge Acquisition and Modeling, 2008. KAM 7808, pages 534-537.
  16. Marki, F., Charypar, D., and Axhausen, K. W. (2012). Target driven activity planning.
  17. MentiScore-Solutions-Limited (2014). 16 personalities. http://www.16personalities.com. Last accessed: 2014-10-06.
  18. Mohamad, F., Mumtazimah, M., and Fadzli, S. (2013). Integrating an e-learning model using IRT, feldersilverman and neural network approach. In 2013 Second International Conference on Informatics and Applications (ICIA), pages 207-211.
  19. Nijland, L., Arentze, T., and Timmermans, H. (2012). Incorporating planned activities and events in a dynamic multi-day activity agenda generator. Transportation, 39(4):791-806.
  20. Oh, H., Kim, H.-C., and Hong, K.-W. (2009). A dynamic perspective of meeting planners' satisfaction: Toward conceptualization of critical relevancy. Tourism Management, 30(4):471-482.
  21. Plaku, E. and Hager, G. (2010). Sampling-based motion and symbolic action planning with geometric and differential constraints. In 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 5002-5008.
  22. Rytikova, I. and Boicu, M. (2014a). A methodology for personalized competency-based learning in undergraduate courses. In Proceedings of the 15th Annual Conference on Information Technology Education, SIGITE 7814, pages 81-86, New York, NY, USA. ACM.
  23. Rytikova, I. and Boicu, M. (2014b). A methodology for personalized competency-based learning in undergraduate courses. In Proceedings of the 15th Annual Conference on Information Technology Education, SIGITE 7814, pages 81-86, New York, NY, USA. ACM.
  24. Sangineto, E., Capuano, N., Gaeta, M., and Micarelli, A. (2008). Adaptive course generation through learning styles representation. Universal Access in the Information Society, 7(1-2):1-23.
  25. Yang, Q. and Chen, L. (2013). A learning grouping algorithm based on user personality. In 2013 8th International Conference on Computer Science Education (ICCSE), pages 71-75.
Download


Paper Citation


in Harvard Style

Pavlich-Mariscal J., Uribe Y., Barrera León L., Mejia-Molina N., Carrillo-Ramos A., Pomares Quimbaya A., Brijaldo M., Sabogal M., Vicari R. and Martin H. (2015). ASHYI-EDU: Applying Dynamic Adaptive Planning in a Virtual Learning Environment . In Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-107-6, pages 52-63. DOI: 10.5220/0005430400520063


in Bibtex Style

@conference{csedu15,
author={Jaime Pavlich-Mariscal and Yolima Uribe and Luisa Fernanda Barrera León and Nadia Alejandra Mejia-Molina and Angela Carrillo-Ramos and Alexandra Pomares Quimbaya and Monica Brijaldo and Martha Sabogal and Rosa Maria Vicari and Hervé Martin},
title={ASHYI-EDU: Applying Dynamic Adaptive Planning in a Virtual Learning Environment},
booktitle={Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU,},
year={2015},
pages={52-63},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005430400520063},
isbn={978-989-758-107-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU,
TI - ASHYI-EDU: Applying Dynamic Adaptive Planning in a Virtual Learning Environment
SN - 978-989-758-107-6
AU - Pavlich-Mariscal J.
AU - Uribe Y.
AU - Barrera León L.
AU - Mejia-Molina N.
AU - Carrillo-Ramos A.
AU - Pomares Quimbaya A.
AU - Brijaldo M.
AU - Sabogal M.
AU - Vicari R.
AU - Martin H.
PY - 2015
SP - 52
EP - 63
DO - 10.5220/0005430400520063