Central Model Predictive Control of a Group of Domestic Heat Pumps - Case Study for a Small District

R. P. van Leeuwen, J. Fink, G. J. M. Smit

2015

Abstract

In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and algorithms used for the prediction and planning steps in order to obtain a planning for the heat pumps. The optimization algorithm minimizes the maximum peak electricity demand of the district. Simulated results demonstrate the resulting aggregated electricity demand, the obtained thermal comfort and the state of charge of the domestic hot water storage for an example house. Our results show that a model predictive control outperforms conventional control of individual heat pumps based on feedback control principles.

References

  1. AgentschapNL (2013). Reference houses 2013 (in dutch: Referentiewoningen nieuwbouw 2013). http://www.rvo.nl/sites/default/files/2013/09/ Referentiewoningen.pdf, visited October 2014.
  2. Alpha-Innotec (2014). Alpha-Innotec instruction and user manual WZS series brine/water heat pumps (in Dutch).
  3. Bakker, V. (2011). Triana: a control strategy for Smart Grids: Forecasting, planning & real-time control. PhD thesis, University of Twente.
  4. Blokker, E. and Poortema, K. (2007). Effect study domestic hot water (in dutch: Effecten levering warm tapwater door derden). Technical report, KIWA.
  5. Bosman, M. (2012). Planning in Smart Grids. PhD thesis, University of Twente.
  6. Claessen, F., Claessens, B., Hommelberg, M., Molderink, A., Bakker, V., and Toersche, H. (2014). Comparative analysis of tertiary control systems for smart grids using the flex street model. Renewable energy, 69:260- 270.
  7. Dar, U. I., Sartori, I., Georges, L., and Novakovic, V. (2014). Advanced control of heat pumps for improved flexibility of net-zeb towards the grid. Energy and Buildings, 69:74-84.
  8. Dreijerink, L. and Uitzinger, J. (2013). Socio-economic evaluation report apeldoorn. Technical report, IVAM University of Amsterdam. EU SORCER project.
  9. Duffie, J. A. and Beckman, W. A. (1980). Solar engineering of thermal processes. Wiley, New York.
  10. ECN (2014). Energy trends 2014 (in dutch: Energie trends 2014). Technical report, ECN. http://energietrends.info/, visited December 2014.
  11. Erbs, D. G., Klein, S. A., and Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28(4):293-302.
  12. Fink, J. and Hurink, J. L. (2015). Minimizing costs is easier than minimizing peaks when supplying the heat demand of a group of houses. European journal of operational research, 242(2):644-650.
  13. Fink, J., Leeuwen, R. v., Hurink, J., and Smit, G. (2014). Linear programming control of a group of heat pumps. ESEIA 2014 conference, submitted to Journal Energy, Sustainability and Society.
  14. Halvgaard, R., Poulsen, N., Madsen, H., and Jorgensen, J. (2012). Economic model predictive control for building climate control in a smart grid. Proceedings of 2012 IEEE PES innovative Smart Grid Technologies (ISGT).
  15. Hepbasli, A. and Kalinci, Y. (2009). A review of heat pump water heating systems. Renewable and Sustainable Energy Reviews, 13(6):1211-1229.
  16. Janssen-Visschers, I. and Lee, G. v. d. (2013). Vision on electricity sector production and tax development (in dutch: Visie op productie- en belastingontwikkelingen in de elektriciteitssector). Technical report, Tennet.
  17. Kok, J., Warmer, C., and Kamphuis, I. (2005). PowerMatcher: multiagent control in the electricity infrastructure. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pages 75-82.
  18. Leeuwen, R. v., Fink, J., Wit, J. d., and Smit, G. (2014). Thermal storage in a heat pump heated living room floor for urban district power balancing, effects on thermal comfort, energy loss and costs for residents. In Smartgreens 2014, Barcelona. INSTICC.
  19. Leeuwen, R. v., Wit, J. d., Fink, J., and Smit, G. (2015). Low-energy house thermal model parameter estimation for smart grid control. submitted to conference IEEE-Powertech 2015.
  20. Madsen, H. and Holst, J. (1995). Estimation of continuoustime models for the heat dynamics of a building. Energy and Buildings(1995) 67-79.
  21. Meppelenergie (ND). Meppel energy (in dutch: Meppel energie). http://www.meppelenergie.nl/nieuwveenselanden, visited March 2014.
  22. Milieucentraal (ND). Insights into energy consumption (in dutch: Inzicht in uw energierekening). http://www.milieucentraal.nl/, visited December 2014.
  23. Mitchel, J. W. and Braun, J. E. (2013). Principles of Heating, Ventilation, and Air Conditioning in buildings. Wiley, New York.
  24. Molderink, A., Bakker, V., Bosman, M. G., Hurink, J. L., and Smit, G. J. (2010). A three-step methodology to improve domestic energy efficiency. In Innovative Smart Grid Technologies (ISGT), 2010, pages 1- 8. IEEE.
  25. Prívara, S., S?irokÉ, J., Ferkl, L., and Cigler, J. (2011). Model predictive control of a building heating system: The first experience. Energy and Buildings, 43(2):564-572.
  26. Scheepers, M., Seebregts, A., Hanschke, C., and Nieuwenhout, F. (2007). Influence of innovative technology on the future electricity infrastructure (in dutch: Invloed van innovatieve technologie op de toekomstige elektriciteitsinfrastructuur). Technical report, ECN.
  27. S?irokÉ, J., Oldewurtel, F., Cigler, J., and Prívara, S. (2011). Experimental analysis of model predictive control for an energy efficient building heating system. Applied Energy, 88(9):3079-3087.
  28. TESS (ND). Trnsys transient system simulation tool. http://www.trnsys.com/, visited December 2014.
Download


Paper Citation


in Harvard Style

van Leeuwen R., Fink J. and J. M. Smit G. (2015). Central Model Predictive Control of a Group of Domestic Heat Pumps - Case Study for a Small District . In Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-105-2, pages 136-147. DOI: 10.5220/0005434301360147


in Bibtex Style

@conference{smartgreens15,
author={R. P. van Leeuwen and J. Fink and G. J. M. Smit},
title={Central Model Predictive Control of a Group of Domestic Heat Pumps - Case Study for a Small District},
booktitle={Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2015},
pages={136-147},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005434301360147},
isbn={978-989-758-105-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Central Model Predictive Control of a Group of Domestic Heat Pumps - Case Study for a Small District
SN - 978-989-758-105-2
AU - van Leeuwen R.
AU - Fink J.
AU - J. M. Smit G.
PY - 2015
SP - 136
EP - 147
DO - 10.5220/0005434301360147