Towards a Collective Spatial Analysis - Proposal of a New Paradigm for Supporting the Spatial Decision-making from a Geoprospective Approach

Juan Daniel Castillo Rosas, María Amparo Núñez Andrés, Josep María Monguet Fierro, Alex Jiménez Vélez

2015

Abstract

This paper presents the progress of a research work that seeks to establish prospective spatio-temporal locations of goods, services or events in a given territory primarily through the application of concepts and/or tools that combine Collective Intelligence (CI), Geographic Information Science (GISc) and Complexity Theory. Relying on this notion, probable and plausible future scenarios could be projected to conduct various studies within the context of the Geoprospective (an emerging field of research aimed at issues of territorial forecasting), which might provide valuable alternatives in the decision-making process in order to carry out anticipatory actions to achieve or avoid such scenarios. In the light of the above, it is suggested that this kind of Collective Spatial Analysis (CSA) would provide a new paradigm about how to perform spatial analysis, the same that is based on a cognitive approach of a multidisciplinary group of users who collectively participate with their knowledge on an interdisciplinary basis, and not from a limited single user approach that uses geometric, statistical or mathematical geoprocessing algorithms.

References

  1. Balram, S. & Dragicevic, S., 2006. Collaborative geographic information systems, United Kingdom: Idea Group Publishing.
  2. Blaschke, T. & Merschdorf, H., 2014. Geographic information science as a multidisciplinary and multiparadigmatic field. Cartography and Geographic Information Science, 41(3), pp.196-213. Available at: http://www.tandfonline.com/doi/abs/10.1080/1523040 6.2014.905755 [Accessed April 29, 2014].
  3. Buzai, G.D., 2011. Modelos de localización-asignación aplicados a servicios públicos urbanos: Análisis espacial de Centros de Atención Primaria de Salud en la ciudad de Luján, Argentina. Cuadernos de Geografía - Revista Colombiana de Geografía, 20(2), pp.111-123.
  4. Chang, Z.E. & Li, S., 2013. Geo-Social Model: A Conceptual Framework for Real-time Geocollaboration. Transactions in GIS, 17(2), pp.182- 205. Available at: http://doi.wiley.com/10.1111/j.1467- 9671.2012.01352.x [Accessed May 16, 2013].
  5. Densham, P.J. & Goodchild, M.F., 1994. Spatial Decision Support Systems, Santa Barbara, California, E.U.A.
  6. Emsellem, K., Liziard, S. & Scarella, F., 2012. La géoprospective: l'émergence d'un nouveau champ de recherche? L'Espace géographique, 2(41), pp.154-168. Available at: http://www.cairn.info/revue-espacegeographique-2012-2-page-154.htm.
  7. Fischer, M. M., 2006a. Spatial Analysis and GeoComputation, Viena, Austria: Springer Berlin Heidelberg.
  8. Fischer, M. M., 2006b. Spatial Analysis in Geography. In Spatial Analysis and GeoComputation.
  9. Fischer, M. M. & Getis, A. eds., 2010. Handbook of Applied Spatial Analysis. Software Tools, Methods and Applications, Springer-Verlag Berlin Heidelberg. Available at: http://www.springerlink.com/index/10. 1007/978-3-642-03647-7.
  10. Flanagin, A.J. & Metzger, M.J., 2008. The credibility of volunteered geographic information. GeoJournal, 72(3- 4), pp.137-148. Available at: http://link.springer.com/ 10.1007/s10708-008-9188-y [Accessed May 21, 2013].
  11. Franks, N.R. et al., 2002. Information flow, opinion polling and collective intelligence in house-hunting social insects. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 357(October), pp.1567-1583.
  12. Godet, M., Durance, P. & Gerber, A., 2008. Strategic Foresight La Prospective Use and Misuse of Scenario Building, Paris, France. Available at: http://scholar.google.com/scholar?hl=en&btnG=Searc h&q=intitle:Strategic+Foresight+La+Prospective+Use +and+Misuse+of+Scenario+Building#2.
  13. Gomez, B. & Jones, J.P., 2010. Research methods in geography, United Kingdom: A John Wiley & Sons, Ltd., Publication.
  14. Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69, pp.211-221.
  15. Goodchild, M.F. & Haining, R.P., 2004. GIS and spatial data analysis: Converging perspectives. Papers in Regional Science, 83(1), pp.363-385. Available at: http://www.redalyc.org/articulo.oa?id=28900609.
  16. Guzmán Peña, A. R., 2013. Proposal of a Model of Territorial Intelligence. Journal of Technology Management & Innovation, 8(ALTEC), pp.76-83.
  17. Haller, E.A., 2007. Geospatial analysis framework. Brain: Broad Research in Artificial Intelligence and Neuroscience, 1(2), pp.166-171.
  18. Houet, T. & Gourmelon, F., 2014. La géoprospective - apport de la dimension spatiale aux démarches prospectives. Cybergeo: European Journal of Geography [En ligne], pp.1-9. Available at: http:// cybergeo.revues.org/26194.
  19. Hudson-Smith, A. et al., 2009. NeoGeography and Web 2.0: concepts, tools and applications. Journal of Location Based Services, 3(2), pp.118-145. Available at: http://www.tandfonline.com/doi/abs/10.1080/174 89720902950366 [Accessed March 1, 2013].
  20. Jankowski, P. et al., 1997. Spatial group choice: a SDSS tool for collaborative spatial decision-making. International Journal of Geographical Information Science, 11(6), pp.577-602.
  21. Jankowski, P., Fraley, G. & Pebesma, E., 2014. An exploratory approach to spatial decision support. Computers, Environment and Urban Systems, 45, pp.101-113. Available at: http://linkinghub.elsevier. com/retrieve/pii/S0198971514000246 [Accessed November 14, 2014].
  22. Jelokhani-niaraki, M. & Malczewski, J., 2015. A group multicriteria spatial decision support system for parking site selection problem: A case study. Land Use Policy, 42, pp.492-508. Available at: http://dx.doi.org/10.1016/j.landusepol.2014.09.003.
  23. Lévy, P., 2010. From social computing to reflexive collective intelligence: the IEML research program. Information Sciences, 180(1), pp.71-94. Available at: http://linkinghub.elsevier.com/retrieve/pii/S00200255 09003478 [Accessed November 14, 2013].
  24. Longley, P. et al., 2011. Geographic information systems & science 3rd ed., Hoboken, NJ?: Wiley. Available at: http://cataleg.upc.edu/record=b1380997S1*cat.
  25. Martì, T. et al., 2014. Collective health policy making in the Catalan Health System: applying Health Consensus to priority setting and policy monitoring. In Collective Intelligence Conference. Massachusetts, USA: Massachusetts Institute of Technology (MIT), pp. 1-5. Available at: http://humancomputation.com/ci2014/ papers/Active Papers%5CPaper 77.pdf.
  26. MIT, 2012. What is collective intelligence? Handbook of Collective Intelligence. Available at: http://scripts. mit.edu/cci/HCI/index.php?title=Main_Page#What_i s_collective_intelligence.3F [Accessed November 10, 2014].
  27. Moon, G. & Ashworth, M., 1992. Capabilities needed in spatial decision support systems. In GIS/LIS. San Jose, California: American Society of Photogrammetry and Remote Sensing, pp. 594 - 600.
  28. O'Sullivan, D. et al., 2006. Space, place, and complexity science. Environment and Planning A, 38(4), pp.611-617
  29. Painho, M. et al., 2004. Exploring spatial data through computational intelligence: a joint perspective. Soft Computing, 9(5), pp.326-331. Available at: http://link.springer.com/10.1007/s00500-004-0411-6 [Accessed May 10, 2014].
  30. Patel, H., Pettitt, M. & Wilson, J.R., 2012. Factors of collaborative working: A framework for a collaboration model. Applied Ergonomics, 43(1), pp.1-26. Available at: http://dx.doi.org/10.1016/j.apergo.2011.04.009.
  31. Pérez Gallardo, Y. et al., 2013. Collective intelligence as mechanism of medical diagnosis: The iPixel approach. Expert Systems with Applications, 40(7), pp.2726- 2737. Available at: http://dx.doi.org/10.1016/j. eswa.2012.11.020 [Accessed April 22, 2013].
  32. Pitman, A. J., 2005. On the role of Geography in Earth System Science. Geoforum, 36, pp.137-148.
  33. Ratter, B.M.W., 2006. Complexity theory and geography - a contribution to the discussion on an alternative perspective on systems. Mitteilungen der Osterreichischen Geographischen Gesellschaft, 148, pp.109-124.
  34. Sieber, R., 2006. Public Participation Geographic Information Systems: A Literature Review and Framework. Annals of the Association of American Geographers, 96(January), pp.491-507. Available at: http://www.ingentaconnect.com/content/bpl/anna/200 6/00000096/00000003/art00003.
  35. Spielman, S. E., 2014. Spatial collective intelligence? Credibility, accuracy, and volunteered geographic information. Cartography and Geographic Information Science, 41(2), pp.115-124. Available at: http://www. tandfonline.com/doi/abs/10.1080/15230406.2013.8742 00 [Accessed September 18, 2014].
  36. Sugumaran, R. & Degroote, J., 2011. Spatial Decision Support Systems: Principles and Practices, Boca Ratón, Florida: CRC Press, Taylor & Francis Group.
  37. Trappey, C. et al., 2014. Using the collective intelligence of sports fans to improve professional football league customer service. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, pp. 313-318. Available at: http://ieeexplore.ieee.org/ lpdocs/epic03/wrapper.htm?arnumber=6846861 [Accessed January 23, 2015].
  38. Watanabe, S., 1985. Pattern recognition: human and mechanical, New York, New York, USA: John Wiley & Sons, Inc.
  39. Zhao, P., Foerster, T. & Yue, P., 2012. The Geoprocessing Web. Computers & Geosciences, 47, pp.3-12. Available at: http://www.sciencedirect.com/science/art icle/pii/S0098300412001446 [Accessed January 6, 2015].
  40. Di Zio, S. & Pacinelli, A., 2011. Opinion convergence in location: a spatial version of the delphi method. Technological Forecasting and Social Change, 78(9), pp.1565-1578. Available at: http://dx.doi.org/10.1016/j.techfore.2010.09.010 [Accessed October 10, 2012].
Download


Paper Citation


in Harvard Style

Castillo Rosas J., Amparo Núñez Andrés M., Monguet Fierro J. and Jiménez Vélez A. (2015). Towards a Collective Spatial Analysis - Proposal of a New Paradigm for Supporting the Spatial Decision-making from a Geoprospective Approach . In Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-099-4, pages 185-190. DOI: 10.5220/0005469301850190


in Bibtex Style

@conference{gistam15,
author={Juan Daniel Castillo Rosas and María Amparo Núñez Andrés and Josep María Monguet Fierro and Alex Jiménez Vélez},
title={Towards a Collective Spatial Analysis - Proposal of a New Paradigm for Supporting the Spatial Decision-making from a Geoprospective Approach},
booktitle={Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2015},
pages={185-190},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005469301850190},
isbn={978-989-758-099-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Towards a Collective Spatial Analysis - Proposal of a New Paradigm for Supporting the Spatial Decision-making from a Geoprospective Approach
SN - 978-989-758-099-4
AU - Castillo Rosas J.
AU - Amparo Núñez Andrés M.
AU - Monguet Fierro J.
AU - Jiménez Vélez A.
PY - 2015
SP - 185
EP - 190
DO - 10.5220/0005469301850190