A Comparison of Robust Model Predictive Control Techniques for a Continuous Bioreactor

V. E. Ntampasi, O. I. Kosmidou

2015

Abstract

Biotechnology industry is expanded rapidly due to the progress in the understanding of bio-systems and the increased demand for products. Since bioprocess dynamics are almost always affected by physical parameter variations and external disturbances, the need for robust control techniques is of major importance in order to ensure the desired behavior of the process. The overall process equilibrium is guaranteed if all quantities in the bioreactor remain into prescribed ranges. In recent years, closed-loop control methods have been used in order to cope with uncertainty and an important number of constraints imposed by the physical system. For this purpose, predictive control is a quite promising technique. In the present paper three robust model predictive control (RMPC) techniques are used in order to regulate the substrate concentration and the biomass production in a bioreactor. These techniques are applied to a continuous bioreactor in which the pH changes are considered as disturbances while the air pressure is ignored by the process model. For the simulation purposes a linearized model of the system has been used in which the uncertainty is described in the form of a disturbance term. The effectiveness of the methods is illustrated by means of simulation results.

References

  1. A Cuzzola, F., C Geromel, J., and Morari, M. (2002). An improved approach for constrained robust model predictive control. Automatica, 38(7):1183-1189.
  2. Abate, A. and El Ghaoui, L. (2004). Robust model predictive control through adjustable variables: an application to path planning. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 3, pages 2485-2490. IEEE.
  3. Allwright, J. and Papavasiliou, G. (1992). On linear programming and robust model-predictive control using impulse-responses. Systems & Control Letters, 18(2):159-164.
  4. Ashoori, A., Moshiri, B., Khaki-Sedigh, A., and Bakhtiari, M. R. (2009). Optimal control of a nonlinear fedbatch fermentation process using model predictive approach. Journal of Process Control, 19(7):1162-1173.
  5. Badgwell, T. A. (1997). A robust model predictive control algorithm for stable linear plants. In American Control Conference, 1997. Proceedings of the 1997, volume 3, pages 1618-1622. IEEE.
  6. Bemporad, A. (1998). A predictive controller with artificial lyapunov function for linear systems with input/state constraints. Automatica, 34(10):1255-1260.
  7. Bemporad, A. and Garulli, A. (1997). Predictive control via set-membership state estimation for constrained linear systems with disturbances. In Proceedings of the 4th European Control Conference.
  8. Campo, P. J. and Morari, M. (1987). Robust model predictive control. In American Control Conference, 1987, pages 1021-1026. IEEE.
  9. Freitas, C. and Teixeira, J. (1998). Hydrodynamic studies in an airlift reactor with an enlarged degassing zone. Bioprocess Engineering, 18(4):267-279.
  10. Fukushima, H. and Bitmead, R. R. (2005). Robust constrained predictive control using comparison model. Automatica, 41(1):97-106.
  11. Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control constraints: The theory and application of maximal output admissible sets. Automatic Control, IEEE Transactions on, 36(9):1008-1020.
  12. Grossmann, I. E., Halemane, K. P., and Swaney, R. E. (1983). Optimization strategies for flexible chemical processes. Computers & Chemical Engineering, 7(4):439-462.
  13. Keerthi, S. a. and Gilbert, E. G. (1988). Optimal infinitehorizon feedback laws for a general class of constrained discrete-time systems: Stability and movinghorizon approximations. Journal of optimization theory and applications, 57(2):265-293.
  14. Kerrigan, E. C. and Maciejowski, J. M. (2004). Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution. International Journal of Robust and Nonlinear Control, 14(4):395-413.
  15. Kothare, M. V., Balakrishnan, V., and Morari, M. (1996a). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361- 1379.
  16. Kothare, M. V., Balakrishnan, V., and Morari, M. (1996b). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361- 1379.
  17. Lee, J. a. and Yu, Z. (1997). Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 33(5):763-781.
  18. Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in matlab. In Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284-289. IEEE.
  19. Löfberg, J. (2008). Modeling and solving uncertain optimization problems in yalmip. In Proceedings of the 17th IFAC World Congress, pages 1337-1341.
  20. Mailleret, L., Bernard, O., and Steyer, J.-P. (2004). Nonlinear adaptive control for bioreactors with unknown kinetics. Automatica, 40(8):1379-1385.
  21. Mayne, D. Q., Rakovic, S., Findeisen, R., and Allgöwer, F. (2006). Robust output feedback model predictive control of constrained linear systems. Automatica, 42(7):1217-1222.
  22. Mayne, D. Q. and Schroeder, W. (1997). Robust timeoptimal control of constrained linear systems. Automatica, 33(12):2103-2118.
  23. Parker, R. and Doyle, F. (1998). Nonlinear model predictive control of a continuous bioreactor at near-optimum conditions. In American Control Conference, 1998. Proceedings of the 1998, volume 4, pages 2549-2553. IEEE.
  24. Rawlings, J. B. and Mayne, D. Q. (2009). Model predictive control: Theory and design. Nob Hill Pub.
  25. Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained receding horizon control. Automatic Control, IEEE Transactions on, 38(10):1512-1516.
  26. Rubio, F. C., Garcia, J. L., Molina, E., and Chisti, Y. (2001). Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models. Chemical Engineering Journal, 84(1):43-55.
  27. Schmid, C. and Biegler, L. T. (1994). Quadratic programming methods for reduced hessian sqp. Computers & chemical engineering, 18(9):817-832.
  28. Scokaert, P. and Mayne, D. (1998). Min-max feedback model predictive control for constrained linear systems. Automatic Control, IEEE Transactions on, 43(8):1136-1142.
  29. Seborg, D., Edgar, T. F., and Mellichamp, D. (2006). Process dynamics & control. John Wiley & Sons.
  30. Wang, Y. J. and Rawlings, J. B. (2004a). A new robust model predictive control method i: theory and computation. Journal of Process Control, 14(3):231-247.
  31. Wang, Y. J. and Rawlings, J. B. (2004b). A new robust model predictive control method. ii: examples. Journal of Process control, 14(3):249-262.
  32. Zheng, Z. Q. A. (1995). Robust control of systems subject to contraints.
Download


Paper Citation


in Harvard Style

E. Ntampasi V. and I. Kosmidou O. (2015). A Comparison of Robust Model Predictive Control Techniques for a Continuous Bioreactor . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 431-438. DOI: 10.5220/0005480004310438


in Bibtex Style

@conference{icinco15,
author={V. E. Ntampasi and O. I. Kosmidou},
title={A Comparison of Robust Model Predictive Control Techniques for a Continuous Bioreactor},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={431-438},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005480004310438},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Comparison of Robust Model Predictive Control Techniques for a Continuous Bioreactor
SN - 978-989-758-122-9
AU - E. Ntampasi V.
AU - I. Kosmidou O.
PY - 2015
SP - 431
EP - 438
DO - 10.5220/0005480004310438