Computational Neuroscience - Challenges and Implications for Brazilian Education
Raimundo José Macário Costa, Luís Alfredo Vidal de Carvalho, Emilio Sánchez Miguel, Renata Mousinho, Renato Cerceau, Lizete Pontes Macário Costa, Jorge Zavaleta, Laci Mary Barbosa Manhães, Sérgio Manuel Serra da Cruz
2015
Abstract
Understanding the core function of the brain is one the major challenges of our times. In the areas of neuroscience and education, several new studies try to correlate the learning difficulties faced by children and youth with behavioral and social problems. This work aims to present the challenges and opportunities of computational neuroscience research, with the aim of detecting people with learning disorders. We present a line of investigation based on the key areas: neuroscience, cognitive sciences and computer science, which considers young people between nine and eighteen years of age, with or without a learning disorder. The adoption of neural networks reveals consistency in dealing with pattern recognition problems and they are shown to be effective for early detection in patients with these disorders. We argue that computational neuroscience can be used for identifying and analyzing young Brazilian people with several cognitive disorders.
References
- Abbott, A. (2013) “Neuroscience: Solving the brain”, In: Nature 499, pages. 272-274.
- Berman JJ, (2009) “Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information” Morgan Kaufmann; 1st Edition.
- Ciccarese, P., Soiland-Reyes, S., Belhajjame, K., Gray, A.J.G, Goble, C., Clark, T. (2013) “PAV ontology: provenance, authoring and versioning”, Journal of Biomedical Semantics 2013, 4:37.
- Chen J. H., Zhong, N. (2013) “Toward the Data-Brain driven systematic brain data analysis”. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(1), pages. 222-228.
- Chen J. H., Zhong, N., Liang, P. P. (2012) “Data-Brain driven systematic human brain data analysis: A case study in numerical inductive reasoning centric investigation” Cognitive Systems Research, Elsevier, vol. 15-16, pages. 17-32.
- Cruz, S.M.S, Campos, M. L M., Mattoso, M. (2009) “Towards a Taxonomy of Provenance in Scientific Workflow Management Systems”. SERVICES I 2009: 259-266.
- Cruz, S.M.S, Campos, M. L M., Mattoso, M. (2012) “A Foundational Ontology to Support Scientific Experiments”. ONTOBRAS-MOST 2012: 144-155.
- Davison, A.P. (2010) “Challenges and solutions in replicability and provenance tracking for simulation projects”. BMC Neuroscience 2010, 11(Suppl 1):P76.
- Deelman E, Gannon D, Shields M, Taylor I (2009) “Workflows and e-Science: An overview of workflow system features and capabilities”, Future Generation Computer Systems 25(5):528-540.
- Giraud A.L., Ramus, F. (2013) “Neurogenetics and auditory processing in developmental dyslexia”. Curr. Opin. Neurobiol. 23:37-42.
- HBP (2014) “Human Brain Project”. https://www.humanbrainproject.eu/
- Hey, T., Tansley, S., Tolle, K (2009) “The Fourth Paradigm: Data-Intensive Scientific Discovery” Microsoft Press. 1st Edition.
- Kubilius, J. (2013) “A framework for streamlining research workflow in neuroscience and psychology”. Front. Neuroinform. 7: 52.
- Lent, R. (2001) “Cem Bilhões de Neurônios - Conceitos Fundamentais de Neurociência”. SP. Ed. Atheneu.
- Macário Costa, R. J., Pará, T. S., Caloba, L. P., Carvalho, L. A. V. (2007) “Classificação de pacientes com transtorno de dislexia usando redes neurais artificiais”. In: XXX CNMAC, Florianópolis.
- Macário Costa, R. J., Mousinho, R., Carvalho, L. A. V. (2008) “Redes Neuronais: um instrumento no rastreio (screening) de pessoas com risco de transtorno específico de leitura”. In: I Congresso Ibro/Larc de Neurociências da América Latina, Caribe e Península Ibérica, 2008, Búzios, RJ.
- Macário Costa, R. J., Mousinho, R., Vidal, L. A. (2009) “Abordagem Computacional no Screening da Dislexia e do TDAH”. In: XXXII CNMAC, Cuiabá.
- Macário Costa, R. J., Cruz, S. M. S., Vidal, L. A., Mousinho, R, Tosta, F. O. (2009) “Redes neuronais e transtornos de aprendizagem: rastreio de pessoas com dislexia”. In: SBIE. v. 20. p. 1-10. Florianopólis.
- Macário Costa, R. J., Mousinho, R.; Vidal, L. A. (2009) “Dislexia e Inteligência Computacional: Um sistema para rastrear (Screening) pessoas com sinais de transtorno de leitura”. In: 2o. Congresso Internacional de Dislexia, São Paulo.
- Macário Costa, R. J. (2011) “Uma Estratégia computacional na detecção da dislexia”. Rio de Janeiro: Tese - UFRJ/COPPE.
- Macário Costa, R. J. Cruz, S. M. S., Zavaleta, J, Carvalho, L. A. V.; Mousinho, Renata (2011) “Abordagem tecnológica para rastreio de pessoas com dislexia”. Tecer (Belo Horizonte), v. 4, p. 41-53.
- Macário Costa, R. J., Zavaleta, J., Cruz, S. M. S., Cerceau, R., Mousinho, R., Carvalho, L. A. V. (2013) “A Computational Approach for Screening Dyslexia”. In: CBMS 2013, 2013, Porto. 26th IEEE International Symposium on Computer-Based Medical Systems.
- Macário Costa, R. J., Carvalho, L. A. V, Miguel, E. Mousinho, R S., Cerceau, R., Macario Costa L. P., Cruz, S. M. S. (2014) “Desafios e Oportunidades em Neurociência Computacional na Educação Brasileira”. In: Grandes Desafios da Computação no Brasil 3a Edição. Porto Alegre. Sociedade Brasileira da Computação. SBC. (to be published).
- Markram, H. (2013) “Seven Challenges in Neuroscience”, In: Functional Neurobiology 28(3) 145-151.
- Mousinho, R. (2003) “Desenvolvimento da Leitura, Escrita e seus Transtornos. In: Goldfeld, M. Fund. em Fonoaudiologia”. Guanabara Koogan. 2a edição.
- Mousinho, R. et al. (2011) “Dislexia - Novos temas, novas perspectivas. Wak Editora. Rio de Janeiro.
- NIH (2014) “BRAIN 2025: A Scientific Vision”, http://www.nih.gov/science/brain/2025/.
- Schwartz, E. (1990) “Computational Neuroscience”, MIT Press, 1st edition.
- Shaywitz, S.E. Shaywitz, B.A. (1999) “Dyslexia In: Swaiman KF, Ashwal S. Pediatric Neurology - Principal e Practice”, Connecticut. Ed. Mosby.
- Zavaleta, J. et al. (2012) “DysDTool: Uma Ferramenta Inteligente para Avaliação e Intervenção no Apoio ao Diagnóstico da Dislexia”. In: CSBC- XII Workshop de Informática Médica.
- Zhong, N. et al. (2011) “Brain Informatics”. IEEE Intelligent Systems. September, pages 16-20.
- Zhong, N (2012) “Research Issues and Challenges on Brain Informatics Towards Computing & Intelligence in the Big Data Era”. pakdd2014.pakdd.org/tutorial3.pdf.
Paper Citation
in Harvard Style
José Macário Costa R., Alfredo Vidal de Carvalho L., Sánchez Miguel E., Mousinho R., Cerceau R., Macário Costa L., Zavaleta J., Manhães L. and Serra da Cruz S. (2015). Computational Neuroscience - Challenges and Implications for Brazilian Education . In Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-107-6, pages 436-441. DOI: 10.5220/0005481004360441
in Bibtex Style
@conference{csedu15,
author={Raimundo José Macário Costa and Luís Alfredo Vidal de Carvalho and Emilio Sánchez Miguel and Renata Mousinho and Renato Cerceau and Lizete Pontes Macário Costa and Jorge Zavaleta and Laci Mary Barbosa Manhães and Sérgio Manuel Serra da Cruz},
title={Computational Neuroscience - Challenges and Implications for Brazilian Education},
booktitle={Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU,},
year={2015},
pages={436-441},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005481004360441},
isbn={978-989-758-107-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU,
TI - Computational Neuroscience - Challenges and Implications for Brazilian Education
SN - 978-989-758-107-6
AU - José Macário Costa R.
AU - Alfredo Vidal de Carvalho L.
AU - Sánchez Miguel E.
AU - Mousinho R.
AU - Cerceau R.
AU - Macário Costa L.
AU - Zavaleta J.
AU - Manhães L.
AU - Serra da Cruz S.
PY - 2015
SP - 436
EP - 441
DO - 10.5220/0005481004360441