EPIK - Virtual Rehabilitation Platform Devised to Increase Self-reliance of People with Limited Mobility

Sonia Garrote, Azael J. Herrero, Miguel Pedraza-Hueso, Carlos González-Gutiérrez, María V. Fernández-San Román, F. J. Díaz-Pernas, Héctor Menéndez, Cristina M. Ferrero, Mario Martínez-Zarzuela

2015

Abstract

In this paper we describe a virtual rehabilitation platform designed to improve balance of people with physical impairment using the Microsoft® Kinect® sensor. Different types of users can interact with the platform: Administrators, therapists, and final users (patients), using their own interfaces and modules. Six modules have been designed: Profile, Administrator, Evaluation, Therapist, Game and Results; but only four have been implemented so far: Administrator, Evaluation, Therapist and Game. The Administrator’s module is used to generate a database of exercises. The Therapist’s module allows therapists to configure the game training session using combinations of exercises from the database. The patients’ or game module includes a 3D immersive environment, where they perform the prescribed rehabilitation exercises, previously configured by a therapist. The platform is in its first beta version and ready to be tested.

References

  1. Antón D., Goñi A., Illarramendi A., Torres-Unda J.J., Seco J., 2013. KiRes: A Kinect-based telerehabilitation system. IEEE 15th International Conference on e-Health Networking, Applications and Services, 456-460.
  2. Boutron I., Moher D., Altman D.G., Schulz K.F., Ravaud, P., 2008. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Annals of Internal Medicine, 148(4), 295-309.
  3. Chang Y.-J., Chen S.-F., Huang J.-D., 2011. A Kinect based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 32(6), 2566-2570.
  4. Da Gama A., Fallavollita P., Teichrieb V., Navab, N., 2015. Motor rehabilitation using Kinect: A systematic review. Games for Health Journal, 4(2), 123-135.
  5. Fearon P., Langhorne P., 2012. Services for reducing duration of hospital care for acute stroke patients. Cochrane Stroke Group, 9, 1-97.
  6. Fisher R.J., Gaynor C., Kerr M., Langhorne P., Anderson C., Bautz-Holter E., Indredavik B., Mayo N.E., Power M., Rodgers H., Rønning O.M., Widén-Holmqvist L., Wolfe C.D., Walker M.F., 2011. A consensus on stroke: early supported discharge. Stroke, 42(5), 1392- 1397.
  7. Hornero .F, Martín E., Rodríguez R., Castellà M., Porras C., Romero B., Maroto L., Pérez De La Sota E, 2013. A multicentre Spanish study for multivariate prediction of perioperative in-hospital cerebrovascular accident after coronary bypass surgery: the PACK2 score. Interact Cardiovasc Thorac Surg, 17(2), 353- 358.
  8. Jansen-Kosterink S.M., Huis in 't Veld R., Schönauer C., Kaufmann H., Doz Mag P., Hermens H.J., Vollenbroek-Hutten M., 2013. A Serious Exergame for Patients Suffering from Chronic Musculoskeletal Back and Neck Paint. (Pilot Study). Games for Health Journal: Research, Development, and Clinical Applications, 2(5), 299-307.
  9. Kato P.M., 2010. Video games in health care: Closing the gap. Rev. Gen Psychol, 14(2), 113-121.
  10. Mackay, J., Mensha G. A., 2004. The Atlas of Heart Disease and Stroke. Risk factors. World Health Organization (WHO), in conjunction with the USA's Centers for Disease Control and Prevention (CDC) of the U.S. Department of Health and Human Services, and is strongly supported by NGOs such as the World Heart Federation (WHF). Available: http://www.who. int/cardiovascular_diseases/en/cvd_atlas_03_risk_fact ors.pdf?ua=1 (Last visited Feb. 4, 2015).
  11. Mirelman A., Patritti B. L., Bonato P., Deutsch J. E., 2010. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait & Posture, 31(4), 433-437.
  12. Muñoz J., Henao O., López J., Villada J., 2013. BKI: Brain Kinect Interface, a new hybrid BCI for rehabilitation. Games for Health, 233-245.
  13. Nichols-Larsen D.S., Clark P.C., Zeringue A., Greenspan A., Blanton S., 2005. Factors influencing stroke survivors' quality of life during subacute recovery. Stroke, 36(7), 1480-1484.
  14. Pirovano M., Mainetti R., Baud-Bovy G., Lanzi P.L., Borghese N.A., 2012. Self-adaptive games for rehabilitation at home. Computational Intelligence and Games (CIG), 2012 IEEE Conference on IEEE, 179- 186.
  15. Primack B. A., Carroll M.V., McNamara M., Klem M.L, King B., Rich M., Chan C.W., Nayak S., 2012. Role of Video Games in Improving Health-Related Outcomes A Systematic Review. American Journal of Preventive Medicine, 42(6), 630-638.
  16. Rajaratnam B., Gui KaiEn J., Lee JiaLin K., SweeSin K., Sim FenRu S., Enting L., Ang YiHsia E., KeatHwee N., Yunfeng S., Woo YingHowe W., 2013. Does the Inclusion of Virtual Reality Games within Conventional Rehabilitation Enhance Balance Retraining after a Recent Episode of Stroke?. Rehabilitation research and practice, vol. 2013, Article ID 649561, 6 pages.
  17. Robertson C., Vink L., Regenbrecht H., Lutteroth C., Wünsche B.C., 2013. Mixed reality Kinect Mirror box for stroke rehabilitation. 2013 28th International Conference of Image and Vision Computing New Zealand (IVCNZ), 231-235.
  18. Saunders D.H., Greig C.A., Mead G.E., 2014. Physical activity and exercise after stroke: review of multiple meaningful benefits. Stroke, 45(12), 3742-3747.
  19. Su C.J., 2013. Personal rehabilitation exercise assistant with kinect and dynamic time warping. International Journal of Information and Education Technology, 3(4), 448-454.
  20. Teasell R., Foley N., Salter K., Richardson M., Allen L., Hussein N., Bhogal S., Jutai J., Speechley M., 2013. Evidence - Based Review of Stroke Rehabilitation. Executive Summary (16th Edition). EBERSR. Available: http://www.ebrsr.com/ (Last visited Feb. 4, 2015).
  21. World Health Organization (WHO), 2012. Global Health Observatory Data Repository. Available: http://apps.who.int/gho/data/node.main.688. (Last visited Feb. 4, 2015).
Download


Paper Citation


in Harvard Style

Garrote S., Herrero A., Pedraza-Hueso M., González-Gutiérrez C., Fernández-San Román M., Díaz-Pernas F., Menéndez H., Ferrero C. and Martínez-Zarzuela M. (2015). EPIK - Virtual Rehabilitation Platform Devised to Increase Self-reliance of People with Limited Mobility . In Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AgeingWell, ISBN 978-989-758-102-1, pages 188-193. DOI: 10.5220/0005484301880193


in Bibtex Style

@conference{ict4ageingwell15,
author={Sonia Garrote and Azael J. Herrero and Miguel Pedraza-Hueso and Carlos González-Gutiérrez and María V. Fernández-San Román and F. J. Díaz-Pernas and Héctor Menéndez and Cristina M. Ferrero and Mario Martínez-Zarzuela},
title={EPIK - Virtual Rehabilitation Platform Devised to Increase Self-reliance of People with Limited Mobility},
booktitle={Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AgeingWell,},
year={2015},
pages={188-193},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005484301880193},
isbn={978-989-758-102-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AgeingWell,
TI - EPIK - Virtual Rehabilitation Platform Devised to Increase Self-reliance of People with Limited Mobility
SN - 978-989-758-102-1
AU - Garrote S.
AU - Herrero A.
AU - Pedraza-Hueso M.
AU - González-Gutiérrez C.
AU - Fernández-San Román M.
AU - Díaz-Pernas F.
AU - Menéndez H.
AU - Ferrero C.
AU - Martínez-Zarzuela M.
PY - 2015
SP - 188
EP - 193
DO - 10.5220/0005484301880193