Content-based Image Retrieval System with Relevance Feedback

Hanen Karamti, Mohamed Tmar, Faiez Gargouri

2015

Abstract

In the Content-based image retrieval (CBIR) system, user can express his interest with an image to search images from large database. The retrieval technique uses only the visual contents of images. In recent years with the technological advances, there remain many challenging research problems that continue to attract researchers from multiple disciplines such as the indexing, storing and browsing in the large database. However, traditional methods of image retrieval might not be sufficiently effective when dealing these research problems. Therefore there is a need for an efficient way for facilitate to user to find his need in these large collections of images. Therefore, building a new system to retrieve images using the relevance feedback’s technique is necessary in order to deal with such problem of image retrieval. In this paper, a new CBIR system is proposed to retrieve the similar images by integrating a relevance feedback. This system can be exploited to discover a new proper query representation and to improve the relevance of the retrieved results. The results obtained by our system are illustrated through some experiments on images from the MediaEval2014 collection.

References

  1. Berrani, S.-A., Amsaleg, L., and Gros, P. (2002). Recherche par similarité dans les bases de données multidimensionnelles : panorama des techniques d'indexation. RSTI., pages 9-44.
  2. Claveau, V., Tavenard, R., and Amsaleg, L. (2010). Vectorisation des processus d'appariement documentrequeˆte. In CORIA, pages 313-324.
  3. Daniilidis, K., Maragos, P., and Paragios, N., editors (2010). ECCV'10: Proceedings of the 11th European Conference on Computer Vision Conference on Computer Vision: Part III, Berlin, Heidelberg. Springer-Verlag.
  4. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., and Schmid, C. (2009). Evaluation of gist descriptors for web-scale image search. In Proceedings of the ACM International Conference on Image and Video Retrieval, CIVR 7809, pages 19:1-19:8, New York, NY, USA. ACM.
  5. Ilbeygi, M. and Shah-Hosseini, H. (2012). A novel fuzzy facial expression recognition system based on facial feature extraction from color face images. Eng. Appl. Artif. Intell., pages 130-146.
  6. Ionescu, B., Popescu, A., Lupu, M., Gˆinsca, A., and Müller, H. (2014). Retrieving diverse social images at mediaeval 2014: Challenge, dataset and evaluation. In Working Notes Proceedings of the MediaEval 2014 Workshop, Barcelona, Catalunya, Spain, October 16- 17, 2014.
  7. Joachims, T. (1997). A probabilistic analysis of the rocchio algorithm with tfidf for text categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, ICML 7897, pages 143-151, San Francisco, CA, USA.
  8. Karamti, H. (2013). Vectorisation du modèle d'appariement pour la recherche d'images par le contenu. In CORIA, pages 335-340.
  9. Karamti, H., Tmar, M., and BenAmmar, A. (2012). A new relevance feedback approach for multimedia retrieval. In IKE, July 16-19, Las Vegas Nevada, USA, page 129.
  10. Karamti, H., Tmar, M., and Gargouri, F. (2014). Vectorization of content-based image retrieval process using neural network. In ICEIS 2014 - Proceedings of the 16th International Conference on Enterprise Information Systems, Volume 2, Lisbon, Portugal, 27-30 April, 2014, pages 435-439.
  11. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  12. Mitra, M., Singhal, A., and Buckley, C. (1998). Improving automatic query expansion. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 7898, pages 206-214, New York, NY, USA. ACM.
  13. Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. (2007). Object retrieval with large vocabularies and fast spatial matching. In CVPR.
  14. pierre Braquelaire, J. and Brun, L. (1997). Comparison and optimization of methods of color image quantization. IEEE TRANS. ON IMAGE PROCESSING, 6:1048- 1051.
  15. Rahman, M. M., Antani, S. K., and Thoma, G. R. (2011). A query expansion framework in image retrieval domain based on local and global analysis. Inf. Process. Manage., 47(5):676-691.
  16. Rivero-Moreno, C. and Bres, S. (2003). Les filtres de Hermite et de Gabor donnent-ils des modéles équivalents du systéme visuel humain? In ORASIS, pages 423- 432.
  17. Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance feedback: A power tool for interactive content-based image retrieval.
  18. Salton, G. (1971). The SMART Retrieval System—Experiments in Automatic Document Processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
  19. Squire, D. M., Müller, H., and Müller, W. (1999). Improving response time by search pruning in a contentbased image retrieval system, using inverted file techniques. In Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries, CBAIVL 7899, pages 45-, Washington, DC, USA. IEEE Computer Society.
  20. Swets, D. L. and Weng, J. (1999). Hierarchical discriminant analysis for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 21:386-401.
  21. Tomasev, N. and Mladenic, D. (2013). Image hub explorer: Evaluating representations and metrics for contentbased image retrieval and object recognition. In Blockeel, H., Kersting, K., Nijssen, S., and Zelezn, F., editors, ECML/PKDD (3), volume 8190, pages 637-640. Springer.
  22. Wang, X., Fang, H., and Zhai, C. (2008). A study of methods for negative relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 7808, pages 219-226, New York, NY, USA. ACM.
  23. Winder, S. A. J., Hua, G., and Brown, M. (2009). Picking the best DAISY. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 178-185.
  24. Yan, R., Hauptmann, A. G., and Jin, R. (2003). Negative pseudo-relevance feedback in content-based video retrieval. In In Proceedings of ACM Multimedia (MM2003, pages 343-346.
Download


Paper Citation


in Harvard Style

Karamti H., Tmar M. and Gargouri F. (2015). Content-based Image Retrieval System with Relevance Feedback . In Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-106-9, pages 287-292. DOI: 10.5220/0005488502870292


in Bibtex Style

@conference{webist15,
author={Hanen Karamti and Mohamed Tmar and Faiez Gargouri},
title={Content-based Image Retrieval System with Relevance Feedback},
booktitle={Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2015},
pages={287-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005488502870292},
isbn={978-989-758-106-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Content-based Image Retrieval System with Relevance Feedback
SN - 978-989-758-106-9
AU - Karamti H.
AU - Tmar M.
AU - Gargouri F.
PY - 2015
SP - 287
EP - 292
DO - 10.5220/0005488502870292