Two-player Ad hoc Output-feedback Cumulant Game Control
Chukwuemeka Aduba, Chang-Hee Won
2015
Abstract
This paper studies a finite horizon output-feedback game control problem where two players seek to optimize their system performance by shaping the distribution of their cost function through cost cumulants. We consider a two-player second cumulant nonzero-sum Nash game for a partially-observed linear system with quadratic cost function. We derive the near-optimal players strategy for the second cost cumulant function by solving the Hamilton-Jacobi-Bellman (HJB) equation. The results of the proposed approach are demonstrated by solving a numerical example.
References
- Aberkane, S., Ponsart, J. C., Rodrigues, M., and Sauter, D. (2008). Output feedback control of a class of stochastic hybrid systems. Automatica, 44:1325-1332.
- Basar, T. (1999). Nash Equilibria of Risk-Sensitive Nonlinear Stochastic Differential Games. Journal of Optimization Theory and Applications, 100(3):479-498.
- Bensoussan, A. and Schuppen, J. H. V. (1985). Optimal Control of Partially Observable Stochastic Systems with an Exponential-of-Integral Performance Index. SIAM Journal of Control and Optimization, 23(4):599-613.
- Charilas, D. E. and Panagopoulos, A. D. (2010). A survey on game theory applications in wireless networks. Computer Networks, 54(18):3421-3430.
- Chen, T., Lewis, F. L., and Abu-Khalaf, M. (2007). A Neural Network Solution for Fixed-Final Time Optimal Control of Nonlinear Systems. Automatica, 43(3):482-490.
- Chen, Z. and Jagannathan, S. (2008). Generalized Hamilton-Jacobi-Bellman Formulation-Based Neural Network Control of Affine Nonlinear Discrete-Time Systems. IEEE Transactions on Neural Networks, 19(1):90-106.
- Cruz, J. B., Simaan, M. A., Gacic, A., and Liu, Y. (2002). Moving Horizon Nash Strategies for a Military Air Operation. IEEE Transactions on Aerospace and Electronic Systems, 38(3):989-999.
- Davis, M. (1977). Linear Estimation and Stochastic Control. Chapman and Hall, London, UK.
- Finlayson, B. A. (1972). The Method of Weighted Residuals and Variational Principles. Academic Press, New York, NY.
- Fleming, W. H. and Rishel, R. W. (1975). Deterministic and Stochastic Optimal Control. Springer-Verlag, New York, NY.
- Geromel, J. C., de Souza, C. C., and Skelton, R. E. (1998). Static Output Feedback Controllers: Stability and Convexity. IEEE Transactions on Automatic Control, 43(1):120-125.
- Kailath, T. (1968). An Innovations Approach to Least Square Estimation Part I: Linear Filtering in Additive White Noise. IEEE Transactions on Automatic Control, 13(6):646-655.
- Klompstra, M. B. (2000). Nash equilibria in risk-sensitive dynamic games. IEEE Transactions on Automatic Control, 45(7):1397-1401.
- Mukaidani, H., Xu, H., and Dragon, V. (2010). Static Output Feedback Strategy of Stochastic Nash Games for Weakly-Coupled Large-Scale Systems. In Proc. of the American Control Conference, pages 361-366, Baltimore, MD.
- Sain, M. K. (1966). Control of Linear Systems According to the Minimal Variance Criterion-A New Approach to the Disturbance Problem. IEEE Transactions on Automatic Control, AC-11(1):118-122.
- Sain, M. K. and Liberty, S. R. (1971). Performance Measure Densities for a Class of LQG Control Systems. IEEE Transactions on Automatic Control, AC-16(5):431- 439.
- Sain, M. K., Won, C.-H., Spencer, Jr., B. F., and Liberty, S. R. (2000). Cumulants and risk-sensitive control: A cost mean and variance theory with application to seismic protection of structures. In Filar, J., Gaitsgory, V., and Mizukami, K., editors, Advances in Dynamic Games and Applications, volume 5 of Annals of the International Society of Dynamic Games, pages 427- 459. Birkhuser Boston.
- Sandberg, I. W. (1998). Notes on Uniform Approximation of Time-Varying Systems on Finite Time Intervals. IEEE Transactions on Circuit and Systems-1:Fundamental Theory and Applications, AC-45(8):863-865.
- Smith, P. J. (1995). A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa. The American Statistician, (49):217-219.
- Van De Water, H. and Willems, J. C. (1981). The Certainty Equivalence Property in Stochastic Control Theory. IEEE Transactions on Automatic Control, AC-26(5):1080-1087.
- Won, C.-H., Diersing, R. W., and Kang, B. (2010). Statistical Control of Control-Affine Nonlinear Systems with Nonquadratic Cost Function: HJB and Verification Theorems. Automatica, 46(10):1636-1645.
- Wonham, W. M. (1968). On the Seperation Theorem of Stochastic Control. SIAM Journal of Control, 6(2):312-326.
- Zheng, D. (1989). Some New Results on Optimal and Suboptimal Regulators of the LQ Problem with Output Feedback. IEEE Transactions on Automatic Control, 34(5):557-560.
- Zhu, Q., Han, Z., and Basar, T. (2012). A differential game approach to distributed demand side management in smart grid. In IEEE International Conference on Communications (ICC), pages 3345-3350.
Paper Citation
in Harvard Style
Aduba C. and Won C. (2015). Two-player Ad hoc Output-feedback Cumulant Game Control . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 53-59. DOI: 10.5220/0005503300530059
in Bibtex Style
@conference{icinco15,
author={Chukwuemeka Aduba and Chang-Hee Won},
title={Two-player Ad hoc Output-feedback Cumulant Game Control},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={53-59},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005503300530059},
isbn={978-989-758-122-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Two-player Ad hoc Output-feedback Cumulant Game Control
SN - 978-989-758-122-9
AU - Aduba C.
AU - Won C.
PY - 2015
SP - 53
EP - 59
DO - 10.5220/0005503300530059