Implementation of Evolving Fuzzy Models of a Nonlinear Process
Radu-Emil Precup, Emil-Ioan Voisan, Emil M. Petriu, Mircea-Bogdan Radac, Lucian-Ovidiu Fedorovici
2015
Abstract
This paper presents details on the implementation of evolving Takagi-Sugeno-Kang (TSK) fuzzy models of a nonlinear process represented by the pendulum dynamics in the framework of the representative pendulum-crane systems. The pendulum angle is the output variable of the TSK fuzzy models that are obtained by online identification. The rule bases and the parameters of the TSK fuzzy models are continuously evolved by an online identification algorithm (OIA) that adds new rules with more summarization power and modifies the existing rules and parameters. The OIA is associated with an input selection algorithm that guides the modelling in terms of ranking the inputs according to their importance factors. Three TSK fuzzy models evolved by the OIA are exemplified. The performance of the new evolving TSK fuzzy models is illustrated by experimental results conducted on pendulum-crane laboratory equipment.
References
- Aires, L., Araújo, J., Dourado, A., 2009. Industrial monitoring by evolving fuzzy systems. In Proceedings of Joint 2009 IFSA World Congress and 2009 EUSFLAT Conference. Lisbon, Portugal, 1358-1363.
- Al-Hadithi, B. M., Jiménez, A., Matía, F., 2012. A new approach to fuzzy estimation of Takagi-Sugeno model and its applications to optimal control for nonlinear systems. Applied Soft Computing. 12, 280-290.
- Allouche, B., Vermeiren, L., Dequidt, A., Dambrine, M., 2014. Step-crossing feasibility of two-wheeled transporter: Analysis based on Takagi-Sugeno descriptor approach. In Proceedings of IEEE 17th International Conference on Intelligent Transportation Systems. Qingdao, China, 2675-2680.
- Angelov, P., 2002. Evolving Rule based Models: A Tool for Design of Flexible Adaptive Systems. Berlin, Heidelberg: Springer-Verlag.
- Angelov, P., Filev, D., 2004. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 34, 484-498.
- Angelov, P., Filev, D., 2005. Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In Proceedings of 14th IEEE International Conference on Fuzzy Systems. Reno, NV, USA, 1068- 1073.
- Bošnak, M., Matko, D., Blažic, S., 2012. Quadrocopter control using an on-board video system with off-board processing. Robotics and Autonomous Systems. 60, 657-667.
- Chang, W.-J., Huang, B.-J., 2014. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises. ISA Transactions. 53, 1787-1795.
- Chiu, C.-S., 2014. A dynamic decoupling approach to robust T-S fuzzy model-based control. IEEE Transactions on Fuzzy Systems. 22, 1088-1100.
- Chiu, S. L., 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems. 2, 267-278.
- David, R.-C., Precup, R.-E., Petriu, E. M., Radac, M.-B., Preitl, S., 2013. Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Information Sciences. 247, 154- 1733.
- Deliparaschos, K. M., Nenedakis, F. I., Tzafestas, S. G., 2006. Design and implementation of a fast digital fuzzy logic controller using FPGA technology. Journal of Intelligent and Robotic Systems. 45, 77-96.
- Dovžan, D., Logar, V., Škrjanc, I., 2014. Implementation of an evolving Fuzzy Model (eFuMo) in a monitoring system for a waste-water treatment process. IEEE Transactions on Fuzzy Systems. DOI 10.1109/TFUZZ.2014.2379252.
- Duleba, I., Sasiadek, J. Z., 2003. Nonholonomic motion planning based on Newton algorithm with energy optimization. IEEE Transactions on Control Systems Technology. 11, 355-363.
- El Amraoui, A., Mesghouni, K., 2014. Optimization of a train traffic management problem under uncertainties and disruptions. Studies in Informatics and Control. 23, 313-323.
- Ferreira, P. M., Ruano, A. E., 2009. On-line slidingwindow methods for process model adaptation. IEEE Transactions on Instrumentation and Measurement. 58, 3012-3020.
- Filip, F.-G., Leiviskä, K., 2009. Large-scale complex systems. In Springer Handbook of Automation, S. Y. Nof, Ed. Berlin, Heidelberg: Springer-Verlag, 619- 638.
- Gao, Q., Feng, G., Dong, D., Liu, L., 2015. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems. IEEE Transactions on Cybernetics. 54, 880-887.
- Guerra, T.-M., Bernal, M., Guelton, K., Labiod, S., 2012. Non-quadratic local stabilization for continuous-time Takagi-Sugeno models. Fuzzy Sets and Systems. 201, 40-54.
- Gusikhin, O. Y., Rychtyckyj, N., Filev, D., 2007. Intelligent systems in the automotive industry: applications and trends. Knowledge and Information Systems. 12, 147-168.
- Haber, R. E., Haber-Haber, R., Jiménez, A., Galán, R., 2009. An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process. Applied Soft Computing. 9, 889-895.
- Jang, J.-S. R., 1993. ANFIS: Adaptive-Network-based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics. 23, 665-685.
- Johanyák, Z. C., Papp, O., 2012. A hybrid algorithm for parameter tuning in fuzzy model identification. Acta Polytechnica Hungarica. 9, 153-165.
- Juang, C.-F., Lin, C.-T., 1998. An on-line selfconstructing neural fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems. 6, 12-32, 1998.
- Kasabov, N. K., Song, Q., 2002. DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and its application for time-series prediction. IEEE Transactions on Fuzzy Systems. 10, 144-154.
- Kolemishevska-Gugulovska, T., Stankovski, M., Rudas, I. J., Jiang, N., Jing, J., 2012. A min-max control synthesis for uncertain nonlinear systems based on fuzzy T-S model. In Proceedings of 6th IEEE International Conference Intelligent Systems. Sofia, Bulgaria, 303-310.
- Lam, H. K., Lauber, J., 2013. Membership-functiondependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions. Information Sciences. 232, 253-266.
- Li, H., Sun, X., Shi, P., Lam, H.-K., 2015. Control design of interval type-2 fuzzy systems with actuator fault: Sampled-data control approach. Information Sciences. 302, 1-13.
- Li, Y.-M., Sun, Y.-Y., 2012. Type-2 T-S fuzzy impulsive control of nonlinear systems. Applied Mathematical Modelling. 36, 2710-2723.
- Lin, F.-J., Lin, C.-H., Shen, P.-H., 2001. Self-constructing fuzzy neural network speed controller for permanentmagnet synchronous motor drive. IEEE Transactions on Fuzzy Systems. 9, 751-759.
- Lughofer, E., 2011. Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications. Berlin, Heidelberg: Springer-Verlag.
- Lughofer, E., 2013. On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues. Information Sciences. 251, 22-46.
- Lughofer, E., Klement, E. P., 2005. FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems. In Proceedings of 14th IEEE International Conference on Fuzzy Systems. Reno, NV, USA, 915- 920.
- Osaba, E., Diaz, F., Onieva, E., Carballedo, R., Perallos, A., 2014. AMCPA: A population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems. International Journal of Artificial Intelligence. 12, 1-23.
- Platt, J., 1991. A resource allocating network for function interpolation. Neural Computation. 3, 213-225.
- Pratama, M., Anavatti, S. G., Angelov, P., Lughofer, E., 2014. PANFIS: A novel incremental learning machine. IEEE Transactions on Neural Networks and Learning Systems. 25, 55-68.
- Precup, R.-E., Angelov, P., Costa, B. S. J., SayedMouchaweh, M., 2015. An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Computers in Industry. DOI: 10.1016/j.compind.2015.03.001.
- Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S., Radac, M.-B., 2012a. Novel adaptive gravitational search algorithm for fuzzy controlled servo systems. IEEE Transactions on Industrial Informatics. 8, 791- 800.
- Precup, R.-E., Dragos, C.-A., Preitl, S., Radac, M.-B., Petriu, E. M., 2012b. Novel tensor product models for automatic transmission system control. IEEE Systems Journal. 6, 488-498.
- Precup, R.-E., Filip, H.-I., Radac, M.-B., Petriu, E. M., Preitl, S., Dragos, C.-A., 2014. Online identification of evolving Takagi-Sugeno-Kang fuzzy models for crane systems. Applied Soft Computing. 24, 1155-1163.
- Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C., Dragos, C.-A., Preitl, S., 2012c. Experimental results of evolving Takagi-Sugeno fuzzy models for a nonlinear benchmark. In Proceedings of 2012 IEEE 3rd International Conference on Cognitive Infocommunications. Kosice, Slovakia, 567-572.
- Precup, R.-E., Preitl, S., 2007. PI-fuzzy controllers for integral plants to ensure robust stability. Information Sciences. 177, 4410-4429.
- Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004. Fuzzy controllers for tire slip control in anti-lock braking systems. In Proceedings of IEEE International Conference on Fuzzy Systems. Budapest, Hungary, 3, 1317-1322.
- Precup, R.-E., Preitl, S., Radac, M.-B., Petriu, E. M., Dragos, C.-A., Tar, J. K., 2011. Experiment-based teaching in advanced control engineering. IEEE Transactions on Education. 54, 345-355.
- Precup, R.-E., Tomescu, M. L., Radac, M.-B., Petriu, E. M., Preitl, S., Dragos, C.-A., 2012d. Iterative performance improvement of fuzzy control systems for three tank systems. Expert Systems with Applications. 39, 8288-8299.
- Ramos, J. V., Dourado, A., 2004. On line interpretability by rule base simplification and reduction. In Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems. Aachen, Germany, 1-6.
- Sayed Mouchaweh, M., Devillez, A., Villermain Lecolier, G., Billaudel, P., 2002. Incremental learning in fuzzy pattern matching. Fuzzy Sets and Systems. 132, 49-62.
- Savio, M. R. D., Sankar, A., Vijayarajan, N. R., 2014. A novel enumeration strategy of maximal bicliques from 3-dimensional symmetric adjacency matrix. International Journal of Artificial Intelligence. 12, 42- 56.
- Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics. 15, 116-132.
- Tang, L., Zhao, Y., Liu, J., 2014. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation. 18, 209- 225.
- Tsai, P.-W., Chen, C.-W., 2014, Novel criterion for nonlinear time-delay systems using LMI fuzzy Lyapunov method. Applied Soft Computing. 25, 461- 472.
- Turnau, A., Pilat, A., Hajduk, K., Korytowski, A., Grega, W., Gorczyca, P., Kolek, K., Rosól, M., 2008. Pendulum-Cart System User's Manual. Krakow: INTECO Ltd.
- Tzafestas, S. G., Zikidis, K. C., 2001. NeuroFAST: Online neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Transactions on Systems Man and Cybernetics, Part B: Cybernetics. 31, 797- 802.
- Valdez, F., Melin, P., Castillo, O., 2011. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Applied Soft Computing. 11, 2625-2632.
- Vašcák, J., Pala, M., 2012. Adaptation of fuzzy cognitive maps for navigation purposes by migration algorithms. International Journal of Artificial Intelligence. 8, 20- 37.
- Zhang, N., Zhang, X., Liu, H., Zhang, D., 2014. Optimization scheme of forming linear WSN for safety monitoring in railway transportation. International Journal of Computers Communications & Control. 9, 800-810.
Paper Citation
in Harvard Style
Precup R., Voisan E., Petriu E., Radac M. and Fedorovici L. (2015). Implementation of Evolving Fuzzy Models of a Nonlinear Process . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 5-14. DOI: 10.5220/0005524700050014
in Bibtex Style
@conference{icinco15,
author={Radu-Emil Precup and Emil-Ioan Voisan and Emil M. Petriu and Mircea-Bogdan Radac and Lucian-Ovidiu Fedorovici},
title={Implementation of Evolving Fuzzy Models of a Nonlinear Process},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005524700050014},
isbn={978-989-758-122-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Implementation of Evolving Fuzzy Models of a Nonlinear Process
SN - 978-989-758-122-9
AU - Precup R.
AU - Voisan E.
AU - Petriu E.
AU - Radac M.
AU - Fedorovici L.
PY - 2015
SP - 5
EP - 14
DO - 10.5220/0005524700050014