Bayesian Quadrature in Nonlinear Filtering

Jakub Prüher, Miroslav Šimandl

2015

Abstract

The paper deals with the state estimation of nonlinear stochastic discrete-time systems by means of quadrature-based filtering algorithms. The algorithms use quadrature to approximate the moments given by integrals. The aim is at evaluation of the integral by Bayesian quadrature. The Bayesian quadrature perceives the integral itself as a random variable, on which inference is to be performed by conditioning on the function evaluations. Advantage of this approach is that in addition to the value of the integral, the variance of the integral is also obtained. In this paper, we improve estimation of covariances in quadrature-based filtering algorithms by taking into account the integral variance. The proposed modifications are applied to the Gauss-Hermite Kalman filter and the unscented Kalman filter algorithms. Finally, the performance of the modified filters is compared with the unmodified versions in numerical simulations. The modified versions of the filters exhibit significantly improved estimate credibility and a comparable root-mean-square error.

References

  1. Arasaratnam, I. and Haykin, S. (2009). Cubature Kalman Filters. IEEE Transactions on Automatic Control, 54(6):1254-1269.
  2. Bhar, R. (2010). Stochastic filtering with applications in finance. World Scientific.
  3. Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. (2009). Analytic moment-based Gaussian process filtering. In Proceedings of the 26th Annual International Conference on Machine Learning - ICML 7809, pages 1-8. ACM Press.
  4. Deisenroth, M. P. and Ohlsson, H. (2011). A General Perspective on Gaussian Filtering and Smoothing: Explaining Current and Deriving New Algorithms. In American Control Conference (ACC), 2011, pages 1807-1812. IEEE.
  5. Deisenroth, M. P., Turner, R. D., Huber, M. F., Hanebeck, U. D., and Rasmussen, C. E. (2012). Robust Filtering and Smoothing with Gaussian Processes. IEEE Transactions on Automatic Control, 57(7):1865-1871.
  6. Duník, J., Straka, O., and Šimandl, M. (2013). Stochastic Integration Filter. IEEE Transactions on Automatic Control, 58(6):1561-1566.
  7. Gelb, A. (1974). Applied Optimal Estimation. The MIT Press.
  8. Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B., Bernstein, D., and Ridley, A. (2006). What is the ensemble kalman filter and how well does it work? In American Control Conference, 2006, page 6.
  9. Girard, A., Rasmussen, C. E., Quiñonero Candela, J., and Murray-Smith, R. (2003). Gaussian Process Priors With Uncertain Inputs Application to Multiple-Step Ahead Time Series Forecasting. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 545-552. MIT Press.
  10. Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2):107-113.
  11. Grewal, M. S., Weill, L. R., and Andrews, A. P. (2007). Global Positioning Systems, Inertial Navigation, and Integration. Wiley.
  12. Ito, K. and Xiong, K. (2000). Gaussian Filters for Nonlinear Filtering Problems. IEEE Transactions on Automatic Control, 45(5):910-927.
  13. Jiang, T., Sidiropoulos, N., and Giannakis, G. (2003). Kalman filtering for power estimation in mobile communications. Wireless Communications, IEEE Transactions on, 2(1):151-161.
  14. Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. (2000). A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control, 45(3):477-482.
  15. Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1):35-45.
  16. Li, X. R. and Zhao, Z. (2006). Measuring Estimator's Credibility: Noncredibility Index. In Information Fusion, 2006 9th International Conference on, pages 1-8.
  17. Maybeck, P. S. (1982). Stochastic Models, Estimation and Control: Volume 2. Academic Press.
  18. Minka, T. P. (2000). Deriving Quadrature Rules from Gaussian Processes. Technical report, Statistics Department, Carnegie Mellon University, Tech. Rep.
  19. Nørgaard, M., Poulsen, N. K., and Ravn, O. (2000). New developments in state estimation for nonlinear systems. Automatica, 36:1627-1638.
  20. O'Hagan, A. (1991). Bayes-Hermite quadrature. Journal of Statistical Planning and Inference, 29(3):245-260.
  21. Osborne, M. A., Rasmussen, C. E., Duvenaud, D. K., Garnett, R., and Roberts, S. J. (2012). Active Learning of Model Evidence Using Bayesian Quadrature. In Advances in Neural Information Processing Systems (NIPS), pages 46-54.
  22. Rasmussen, C. E. and Ghahramani, Z. (2003). Bayesian monte carlo. In S. Becker, S. T. and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 489-496. MIT Press, Cambridge, MA.
  23. Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning. The MIT Press.
  24. Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press, New York.
  25. Särkkä, S., Hartikainen, J., Svensson, L., and Sandblom, F. (2014). Gaussian Process Quadratures in Nonlinear Sigma-Point Filtering and Smoothing. In Information Fusion (FUSION), 2014 17th International Conference on, pages 1-8.
  26. Sarmavuori, J. and Särkkä, S. (2012). Fourier-Hermite Kalman Filter. IEEE Transactions on Automatic Control, 57(6):1511-1515.
  27. Šimandl, M. and Duník, J. (2009). Derivative-free estimation methods: New results and performance analysis. Automatica, 45(7):1749-1757.
  28. Smith, G. L., Schmidt, S. F., and McGee, L. A. (1962). Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle. Technical report, NASA Tech. Rep.
  29. Wasserman, L. (2006). All of Nonparametric Statistics. Springer-Verlag New York.
Download


Paper Citation


in Harvard Style

Prüher J. and Šimandl M. (2015). Bayesian Quadrature in Nonlinear Filtering . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 380-387. DOI: 10.5220/0005534003800387


in Bibtex Style

@conference{icinco15,
author={Jakub Prüher and Miroslav Šimandl},
title={Bayesian Quadrature in Nonlinear Filtering},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={380-387},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005534003800387},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Bayesian Quadrature in Nonlinear Filtering
SN - 978-989-758-122-9
AU - Prüher J.
AU - Šimandl M.
PY - 2015
SP - 380
EP - 387
DO - 10.5220/0005534003800387