Inverse Kinematics of a Redundant Manipulator based on Conformal Geometry using Geometric Approach

Je Seok Kim, Jin Han Jeong, Jahng Hyon Park

2015

Abstract

This paper describes a geometrical approach for analysing the inverse kinematics of a 7 Degrees of Freedom (DOF) redundant manipulator. The geometric approach is desirable since it provides complete and simple solutions to the problem and determines the relationship between the joints and the end-effector without iterative process. This paper introduces the approach to solve kinematic solution of 7 DOF in an intuitive way using conformal geometric approach step by step. We finally present the comparison with pseudo inverse solution which is the most well-known method in redundant manipulator kinematic problem at the same simulation environment.

References

  1. Aristidou, A. and J. Lasenby (2011). "FABRIK: A fast, iterative solver for the Inverse Kinematics problem." Graphical Models 73(5): 243-260.
  2. Baillieul, J. (1985). Kinematic programming alternatives for redundant manipulators. Robotics and Automation. Proceedings. 1985 IEEE International Conference on, IEEE.
  3. Bayro-Corrochano, E., L. Reyes-Lozano and J. ZamoraEsquivel (2006). "Conformal Geometric Algebra for Robotic Vision." Journal of Mathematical Imaging and Vision 24(1): 55-81.
  4. Cameron, J. and J. Lasenby (2008). "Oriented conformal geometric algebra." Advances in applied Clifford algebras 18(3-4): 523-538.
  5. D'Orangeville, C. and A. N. Lasenby (2003). Geometric algebra for physicists, Cambridge University Press.
  6. Debaecker, T., R. Benosman and S.-H. Ieng (2008). Cone of view camera model using conformal geometric algebra for classic and panoramic image sensors. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras-OMNIVIS, Marseilles, France.
  7. Fowles, G. R. and G. L. Cassiday (1999). Analytical mechanics, Saunders college.
  8. Haykin, S. (1999). "Adaptive filters." Signal Processing Magazine 6.
  9. Hildenbrand, D. (2012). Foundations of Geometric Algebra Computing, Springer.
  10. Hildenbrand, D., H. Lange, F. Stock and A. Koch (2008). "Efficient inverse kinematics algorithm based on conformal geometric algebra using reconfigurable hardware.".
  11. Hildenbrand, D., J. Zamora and E. Bayro-Corrochano (2008). "Inverse Kinematics Computation in Computer Graphics and Robotics Using Conformal Geometric Algebra." Advances in Applied Clifford Algebras 18(3- 4): 699-713.
  12. Hitzer, E. (2013). "Angles between subspaces." arXiv preprint arXiv:1306.1629.
  13. Ishida, H., J.-i. Meguro, Y. Kojima and T. Naito (2013). "3D Road Boundary Detection Using Conformal Geometric Algebra." IPSJ Transactions on Computer Vision and Applications 5(0): 176-182.
  14. Kim, H., L. M. Miller, N. Byl, G. Abrams and J. Rosen (2012). "Redundancy resolution of the human arm and an upper limb exoskeleton." Biomedical Engineering, IEEE Transactions on 59(6): 1770-1779.
  15. Liegeois, A. (1977). "Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms." Systems, Man and Cybernetics, IEEE Transactions on 7(12): 868-871.
  16. Roa, E., V. Theoktisto, M. Fairén and I. Navazo (2011). GPU Collision Detection in Conformal Geometric Space. V Ibero-American Symposium in Computer Graphics SIACG.
  17. Tolani, D., A. Goswami and N. I. Badler (2000). "Real-time inverse kinematics techniques for anthropomorphic limbs." Graphical models 62(5): 353-388.
  18. Wareham, R., J. Cameron and J. Lasenby (2005). Applications of conformal geometric algebra in computer vision and graphics. Computer Algebra and Geometric Algebra with Applications. Berlin Heidelberg, Springer: 329-349.
  19. Whitney, D. E. (1972). "The mathematics of coordinated control of prosthetic arms and manipulators." Journal of Dynamic Systems, Measurement, and Control 94(4): 303-309.
  20. Wong, D. S. H. and S. I. Sandler (1992). "A theoretically correct mixing rule for cubic equations of state." AIChE Journal 38(5): 671-680.
  21. Zamora, J. and E. Bayro-Corrochano (2004). Inverse kinematics, fixation and grasping using conformal geometric algebra. Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, IEEE.
Download


Paper Citation


in Harvard Style

Seok Kim J., Han Jeong J. and Hyon Park J. (2015). Inverse Kinematics of a Redundant Manipulator based on Conformal Geometry using Geometric Approach . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 179-185. DOI: 10.5220/0005535001790185


in Bibtex Style

@conference{icinco15,
author={Je Seok Kim and Jin Han Jeong and Jahng Hyon Park},
title={Inverse Kinematics of a Redundant Manipulator based on Conformal Geometry using Geometric Approach},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={179-185},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005535001790185},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Inverse Kinematics of a Redundant Manipulator based on Conformal Geometry using Geometric Approach
SN - 978-989-758-122-9
AU - Seok Kim J.
AU - Han Jeong J.
AU - Hyon Park J.
PY - 2015
SP - 179
EP - 185
DO - 10.5220/0005535001790185