Numerical Integration of Multiple Integrals using Taylor Polynomial

Jan Chaloupka, Jiří Kunovský, Václav Šátek, Petr Veigend, Alžbeta Martinkovičová

2015

Abstract

The paper concentrates on a new method of numerical computation of multiple integrals. Equations based on Taylor polynomial are derived. Multiple integral of a continuous function of n-variables is numerically integrated step by step by reducing its dimension. First, integration formulas for a function of two variables are derived. Formulas for function of n-variables are generalized using composition. Numerical derivatives for Taylor terms are repeatedly computed from simple integrals. Finally method is demonstrated on an exponential function of two-variables and a new approach to determine a number of Taylor terms is discussed.

References

  1. F. Khaksar Haghani, F. Soleymani. (2014). A New HighOrder Stable Numerical Method for Matrix Inversion. The Scientific World Journal, Volume 2014
  2. A. Jordan, Z. Maorong. (2005). A Software Package for the Numerical Integration of ODEs by Means of HighOrder Taylor Methods. Experimental Mathematics, Vol. 14, No. 1
  3. A. Abad, R. Barrio, F. Blesa, M. Rodriguez. (2012). Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS. ACM Transactions on Mathematical Software, Vol. 39, No. 1, Article 5.
Download


Paper Citation


in Harvard Style

Chaloupka J., Kunovský J., Šátek V., Veigend P. and Martinkovičová A. (2015). Numerical Integration of Multiple Integrals using Taylor Polynomial . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 163-171. DOI: 10.5220/0005539701630171


in Bibtex Style

@conference{simultech15,
author={Jan Chaloupka and Jiří Kunovský and Václav Šátek and Petr Veigend and Alžbeta Martinkovičová},
title={Numerical Integration of Multiple Integrals using Taylor Polynomial},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2015},
pages={163-171},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005539701630171},
isbn={978-989-758-120-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Numerical Integration of Multiple Integrals using Taylor Polynomial
SN - 978-989-758-120-5
AU - Chaloupka J.
AU - Kunovský J.
AU - Šátek V.
AU - Veigend P.
AU - Martinkovičová A.
PY - 2015
SP - 163
EP - 171
DO - 10.5220/0005539701630171