Human-like Humanoid Robot Posture Control

M. Zebenay, V. Lippi, T. Mergener

2015

Abstract

This paper validates experimentally a humanoid posture control concept from neuroscience, called disturbance estimation and compensation, DEC concept. The DEC control system, different from typical state estimation systems, is not including a dynamic model of the body. Also, among human posture control models it is particular in that it uses feedback of multisensory disturbance estimates for compensation, rather than ’raw’ sensory signals. To this end, the system performs fusions of sensory inputs such as vestibular inputs (IMU) and proprioceptive inputs (joint position and speed). The compensation of external disturbances allows the control to use low loop gain, with human-like tolerance of time delays and mechanical compliance. This paper validates the control concept experimentally, measuring the balancing of biped stance of a humanoid 2 DOF robot, Posturob II, while superimposing on support surface tilt either voluntary trunk bending or push stimuli. The results show that the control concept is robust and able to stabilize the robot’s balance in complex disturbance conditions. Furthermore, several human-like features such as hip-ankle coordination emerged from the control concept.

References

  1. Alexandrov, A., Frolov, A., and Massion, J. (1998). Axial synergies during human upper trunk bending. Experimental Brain Research, 118(2):210-220.
  2. Bastian, A. J. (1997). Mechanisms of ataxia. Physical Therapy, 77:672-675.
  3. Cheng, G., Hyon, S.-H., Morimoto, J., Ude, A., Hale, J. G., Colvin, G., Scroggin, W., and Jacobsen, S. C. (2007). CB: A humanoid research platform for exploring neuroscience. Advanced Robotics, 21:1097-1114.
  4. Cnyrim, C., Mergner, T., and Maurer, C. (2009). Potential role of force cues in human stance control. Experimental Brain Research, 194:419433.
  5. Freitas, S. M., Duarte, M., and Latash, M. L. (2006). Two kinematic synergies in voluntary whole-body movements during standing. Journal of Neurophysiology, 95(2):636-645.
  6. Goswami, A. (1999). Postural stability of biped robots and the foot-rotation indicator (FRI) point. The International Journal of Robotics Research, 18(6):523-533.
  7. Hauser, H., Neumann, G., Ijspeert, A. J., and Maass, W. (2011). Biologically inspired kinematic synergies enable linear balance control of a humanoid robot. Biological cybernetics, 104(4-5):235-249.
  8. Hettich, G., Asslnder, L., Gollhofer, A., and Mergner, T. (2014). Human hipankle coordination emerging from multisensory feedback control. Human Movement Science, 37:123-146.
  9. Kuo, A. D. (2005). An optimal state estimation model of sensory integration in human postural balance. Journal of Neural Engineering, 2(3):S235.
  10. Lippi, V., Mergner, T., and Hettich, G. (2013). A bioinspired modular system for humanoid posture control. . In: Ugur, E., Oztop, E., Morimoto, J., and Ishii, S. (Eds) Proceedings of IROS 2013 Workshop on Neuroscience and Robotics ”Towards a robot-enabled, neuroscience-guided healthy society”.
  11. Maurer, C., Mergner, T., and Peterka, R. J. (2006). Multisensory control of human upright stance. Experimental Brain Research, 171:231250.
  12. Mergner, T. (2010). A neurological view on reactive human stance control. Annual Review Control, 34:77198.
  13. Mergner, T., Huethe, F., Maurer, C., and Ament, C. (2006). Human equilibrium control principles implemented into a biped robot. Robot Design, Dynamics, and Control, 487:271-279.
  14. Mergner, T., Maurer, C., and Peterka, R. J. (2003). A multisensory posture control model of human upright stance. Progress in Brain Research, 142:189-201.
  15. Mergner, T., Schweigart, G., and Fennell, L. (2009). Vestibular humanoid postural control. Journal of Physiology - Paris, 103:178-194.
  16. Nori, F., Peters, J., Padois, V., Babic, J., Mistry, M., Ivaldi, S., et al. (2014). Whole-body motion in humans and humanoids. In Workshop on New Research Frontiers for Intelligent Autonomous Systems.
  17. Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88:10971118.
  18. Schweigart, G. and Mergner, T. (2008). Human stance control beyond steady state response and inverted pendulum simplification. Experimental Brain Research, 185:635-653.
  19. Torricelli, D., Mizanoor, R. S., Gonzalez, J., Lippi, V., Hettich, G., Asslaender, L., Weckx, M., Vanderborght, B., Dosen, S., Sartori, M., et al. (2014). Benchmarking human-like posture and locomotion of humanoid robots: A preliminary scheme. In Biomimetic and Biohybrid Systems, pages 320-331. Springer.
  20. van der Kooij, H., Jacobs, R., Koopman, B., and Grootenboer, H. (1999). A multisensory integration model of human stance control. Biological Cybernetics, 80:299-308.
Download


Paper Citation


in Harvard Style

Zebenay M., Lippi V. and Mergener T. (2015). Human-like Humanoid Robot Posture Control . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-123-6, pages 304-309. DOI: 10.5220/0005542603040309


in Bibtex Style

@conference{icinco15,
author={M. Zebenay and V. Lippi and T. Mergener},
title={Human-like Humanoid Robot Posture Control},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2015},
pages={304-309},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005542603040309},
isbn={978-989-758-123-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Human-like Humanoid Robot Posture Control
SN - 978-989-758-123-6
AU - Zebenay M.
AU - Lippi V.
AU - Mergener T.
PY - 2015
SP - 304
EP - 309
DO - 10.5220/0005542603040309