An Adaptive E-Advertising User Model: The AEADS Approach

Alaa A. Qaffas, Alexandra I. Cristea

2015

Abstract

By customising advertising campaigns based on the attributes of the user, the efficacy and success of the campaign is likely to be enhanced. The most challenging yet interesting part to model is the user (or customer). This paper focuses on an automated, simple, lightweight user model, easy to integrate into an existing system (storage and operation). Accordingly, the arbitrary commercial website can acquire the ability to retrieve general data of the user and monitor the behaviour of the user during navigation session on the website. It also presents a study that assesses the effectiveness of a tool based on this model, via a trial run of a model prototype with users.

References

  1. Benaki, E., Karkaletsis, A. & Spyropoulos, D. 1997a. User Modeling In Www: The Umie Prototype. Proc. Of The Workshop” Adaptive Systems and User Modeling On the World Wide Web, 6th International Conference On User Modelling UM.
  2. Hilde, L., 2009. Control Software for the Autonomous Interoffice Delivery Robot. Master Thesis, Channel Islands, California State University, Camarillo, CA.
  3. Rodrigues, D., 2009. Autonomous Interoffice Delivery Robot (AIDeR) Software Development of the Control Task. Master Thesis, Channel Island, California State University, Camarillo, CA.
  4. Benaki, E., Karkaletsis, V. A. & Spyropoulos, C. D. 1997b. Integrating User Modeling Into Information Extraction: The Umie Prototype. User Modeling. Springer.
  5. Bra, P. D. & Calvi, L. 1998. Aha! An Open Adaptive Hypermedia Architecture. New Review of Hypermedia and Multimedia, 4, 115-139.
  6. Thrun, S., 1998. Learning metric-topological maps for indoor mobile robot navigation. In Artificial Intelligence, Vol. 99, No. 1, pp. 21-71.
  7. Hinkel, R, and Knieriemen, T., 1988. Environment Perception with a Laser Radar in a Fast Moving Robot. In Robot Control 1988 (SYROCO'88): Selected Papers from the 2nd IFAC Symposium, Karlsruhe, FRG.
  8. Brailsford, T. J., Choo, B. S., Davies, P. M. C., Moore, A., Stewart, C. D. & Zakaria, M. R. 2001. Web-Based Hierarchical Universal Reactive Learning Environment (Whurle): An Overview (White Paper for the Whurle Project).
  9. Brusilovsky, P. 1996. Adaptive Hypermedia: An Attempt to Analyze and Generalize. In: Brusilovsky, P., Kommers, P. & Streitz, N. (Eds.) Multimedia, Hypermedia, and Virtual Reality Models, Systems, and Applications. Springer Berlin Heidelberg.
  10. Henderson, A. M., 1012. Autonomous Interoffice Delivery Robot (AIDeR) Environmental Cue Detection. Master Thesis, Channel Island, California State University, Camarillo, CA.
  11. Leonard, J., et al., 2008. A Perception-Driven Autonomous Urban Vehicle. In Journal of Field Robotics, 1-48.
  12. Brusilovsky, P. & Millán, E. User Models for Adaptive Hypermedia and Adaptive Educational Systems. The Adaptive Web, 2007. Springer-Verlag, 3-53.
  13. Cristea, A. I. 2004. What Can The Semantic Web Do For Adaptive Educational Hypermedia? Educational Technology and Society, 7, 40-58.
  14. Tan, F., Yang, J., Huang, J., Jia, T., Chen, W. and Wang, J., 2010. A Navigation System for Family Indoor Monitor Mobile Robot. In The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan.
  15. Roman, M., Miller, D., and White, Z., 2007. Roving Faster Farther Cheaper. In 6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, Springer Tracts in Advanced Robotics; Field and Service Robotics.
  16. Cristea, A. I. & De Mooij, A. 2003. Laos: Layered Www AHS Authoring Model And Their Corresponding Algebraic Operators. Www03 (The Twelfth International World Wide Web Conference), Alternate Track on Education, Budapest, Hungary.
  17. Davis, H. 2006. Google Advertising Tools: Cashing In With Adsense, Adwords, And The Google Apis, " O'reilly Media, Inc.".
  18. Vilasis-Cardona, X., Luengo, S., Solsona, J., Maraschini, A., Apicella, G. and Balsi, M., 2002. Guiding a mobile robot with cellular neural networks. In International Journal of Circuit Theory and Applications; 30:611- 624.
  19. Shu, L., Xu, H., and Huang, M., 2013. High-speed and accurate laser scan matching using classified features. In IEEE International Symposium on Robotic and Sensors Environments (ROSE), Page(s): 61 - 66.
  20. De Bra, P., Houben, G.-J. & Wu, H. 1999. Aham: A DexterBased Reference Model for Adaptive Hypermedia. Proceedings of the Tenth ACM Conference On Hypertext And Hypermedia: Returning To Our Diverse Roots: Returning To Our Diverse Roots. Acm.
  21. De Bra, P., Smits, D., Van Der Sluijs, K., Cristea, A. & Hendrix, M. Grapple: Personalization and Adaptation In Learning Management Systems. World Conference on Educational Multimedia, Hypermedia And Telecommunications, 2010. 3029-3038.
  22. Nunez, P. Vazquez-Martin, R. del Toro, J. C. Bandera, A. and Sandoval, F., 2006. Feature extraction from laser scan data based on curvature estimation for mobile robotics. In IEEE International Conference Robotics and Automation (ICRA),, pp. 1167-1172.
  23. Zhang, L. and Ghosh, B. K., 2000. Line segment based map building and localization using 2d laser rangefinder. In IEEE International Conference on Robotics and Automation (ICRA), pp. 2538-2543.
  24. Faust, K. 2007. Very Local Structure in Social Networks. Sociological Methodology, 37, 209-256.
  25. Googleadsense. Maximize Revenue From Your Online Content [Online]. Available: www.Google.Com/ Adsense/ [Accessed 25 March 2014.
  26. Harbl M., Abielmona, R., Naji, K.,and Petriu, E., 2010. Neural Networks for Environmental Recognition and Navigation of a Mobile Robot. In Proceedings of IEEE International Instrumentation and Measurement Technology Conference, Victoria, Vancouver Island, Canada.
  27. Kubota, S., Ando, Y., and Mizukawa, M., 2007. Navigation of the Autonomous Mobile Robot Using Laser Range Finder Based on the Non Quantity Map. In International Conference on Control, Automation and Systems, COEX, Seoul, Korea.
  28. Halasz, F., Schwartz, M., Grønbaek, K. & Trigg, R. H. 1994. The Dexter Hypertext Reference Model. Communications of the ACM, 37, 30-39.
  29. Hof, R. D. 2011. Facebook's New Ad Model: You. Forbes, 188, 106-+.
  30. Bieszczad, A. and Pagurek, B. (1998), Neurosolver: Neuromorphic General Problem Solver. In Information Sciences: An International Journal 105 (1998), pp. 239-277, Elsevier North-Holland, New York, NY.
  31. Bieszczad, A., 2015. Identifying Landmark Cues with LIDAR Laser Scanner Data Taken from Multiple Viewpoints. In Proceedings of International Conference on Informatics in Control, Automation and Robotics (ICINCO), Scitepress Digital Library.
  32. Internetadvertisingbureau 2012. Internet Advertising Revenues Report 2012 Full Year Results.
  33. Kazienko, P. & Adamski, M. 2007. Adrosa-Adaptive Personalization of Web Advertising. Information Sciences, 177, 2269-2295.
  34. Kobsa, A. 2007. Generic User Modeling Systems. The Adaptive Web. Springer.
  35. Kobsa, A., Koenemann, J. & Pohl, W. 2001. Personalised Hypermedia Presentation Techniques For Improving Online Customer Relationships. The Knowledge Engineering Review, 16, 111-155.
  36. Mciver, J. & Carmines, E. G. 1981. Unidimensional Scaling, Sage.
  37. Mérida, D., Fabregat, R. & Marzo, J.-L. 2002. Shaad: Adaptable, Adaptive and Dynamic Hypermedia System for Content Delivery. Workshop on Adaptive Systems for Web Based Education. Waswe2002. Málaga España, 2002. Citeseer.
  38. Qaffas, A. & Cristea, A. 2014a. How to Create an EAdvertising Adaptation Strategy: The Aeads Approach. In: Hepp, M. & Hoffner, Y. (Eds.) E-Commerce and Web Technologies. Springer International Publishing.
  39. Qaffas, A. & Cristea, A. 2014b. How to Create an EAdvertising Domain Model: The Aeads Approach. The 2014 International Conference On E-Learning, EBusiness, Enterprise Information Systems, And EGovernment(Eee'14). Las Vegas, United State.
  40. Schmidt, C. F. 2003. Introduction to Plan Recognition [Online]. Available: Http://Www.Rci.Rutgers.Edu /Cfs/472_Html/Planning/Planrecog.Html [Accessed 30 November 2014.
  41. Scotton, J., Stewart, C. & Cristea, A. I. 2011. Ade: The Adaptive Display Environment for Adaptive Hypermedia. Proceedings of the ACM Hypertext 2011 International Conference, Eindhoven, the Netherlands.
  42. Smits, D. & De Bra, P. 2011. Gale: A Highly Extensible Adaptive Hypermedia Engine. Proceedings of ACMChh, 63-72.
  43. Stash, N., Cristea, A. I. & De Bra, P. 2007. Adaptation Languages as Vehicles of Explicit Intelligence In Adaptive Hypermedia. International Journal Of Continuing Engineering Education And Life Long Learning, 17, 319-336.
  44. Stash, N., De Bra, P. & Cristea, A. 2008. Adaptation To Learning Styles In A General-Purpose System AHA!(Adaptive Hypermedia Architecture). Educational Technology & Society, 11.
  45. Thestatisticsportal. 2015. Number of Monthly Active Facebook Users Worldwide 2008-2014. Available: Http://Www.Statista.Com/Statistics/264810/NumberOf-Monthly-Active-Facebook-Users-Worldwide/ [Accessed 10 February 2015].
  46. Webtechnologysurveys. December 2014. Usage of Advertising Networks for Websites [Online]. Available: Http://W3techs.Com/Technologies/Overview/Advertis ing/All 25 December 2014].
  47. Wu, H. 2002. A Reference Architecture for Adaptive Hypermedia Applications. Technische Universiteit Eindhoven.
Download


Paper Citation


in Harvard Style

A. Qaffas A. and I. Cristea A. (2015). An Adaptive E-Advertising User Model: The AEADS Approach . In Proceedings of the 12th International Conference on e-Business - Volume 1: ICE-B, (ICETE 2015) ISBN 978-989-758-113-7, pages 5-14. DOI: 10.5220/0005568600050014


in Bibtex Style

@conference{ice-b15,
author={Alaa A. Qaffas and Alexandra I. Cristea},
title={An Adaptive E-Advertising User Model: The AEADS Approach},
booktitle={Proceedings of the 12th International Conference on e-Business - Volume 1: ICE-B, (ICETE 2015)},
year={2015},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005568600050014},
isbn={978-989-758-113-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on e-Business - Volume 1: ICE-B, (ICETE 2015)
TI - An Adaptive E-Advertising User Model: The AEADS Approach
SN - 978-989-758-113-7
AU - A. Qaffas A.
AU - I. Cristea A.
PY - 2015
SP - 5
EP - 14
DO - 10.5220/0005568600050014