Integrating Particle Swarm Optimization with Analytical Nonlinear Model Predictive Control for Nonlinear Hybrid Systems

Jean Thomas

2015

Abstract

The computation load remains the main challenge facing the control techniques of hybrid systems with discrete and continuous control signals. In this paper, a new hybrid controller based on Analytical Nonlinear Model Predictive Control (ANMPC) and Particle Swarm Optimization (PSO) for nonlinear hybrid systems is presented. The proposed controller offer sub-optimal solution in reasonable time while respecting the given constraints. The new developed technique is not considered as a computation burden, thus real-time implementation is possible for many hybrid systems. Besides, it can be applied directly to the nonlinear models, avoiding linearization which may lead to inaccurate model and unexpected behaviour. An application of the proposed controller to a three tanks example is presented.

References

  1. Bemporad A. and M. Morari, 1999. Control of systems integrating logical, dynamics, and constraints. Automatica, 35(3):407-427, March.
  2. Bemporad A., F. Borrelli, and M. Morari, 2000a. Optimal controllers for hybrid systems: Stability and piecewise linear explicit form. In Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, December 2000.
  3. Bemporad A., F. Borrelli, and M. Morari, 200b. Piecewise linear optimal controllers for hybrid systems. In Proc. American Contr. Conf., pages 1190-1194, Chicago, IL, June 2000.
  4. Bratton D., and J. Kennedy, 2007. Defining a Standard for Particle Swarm Optimization. Proceedings of the 2007 IEEE Swarm Intelligence Symposium.
  5. Camacho, E. F. et C. Bordons, 1999. Model predictive control. Springer-Verlag, London.
  6. Clarke, D.W., C. Mohtadi et P. S. Tuffs, 1987. Generalized predictive control - Part I. and II. Automatica, Vol.23 (2), pp. 137-160.
  7. Clerc M., and J. Kennedy, 2002. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, Vol. 6(1): pp. 58-73.
  8. Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Network, IV: 1942-1948.
  9. Maciejowski J.M., 2002. Predictive Control. Prentice Hall.
  10. Olaru Sorin, Jean Thomas, Didier Dumur and Jean Buisson, 2004. “Genetic Algorithm based Model Predictive Control for Hybrid Systems under a Modified MLD Form”, International journal of Hybrid Systems, Vol. 4 : 1-2, mars-juin 2004.
  11. Poli R., 2008. Analysis of the Publications on the Applications of Particle Swarm Optimisation. Journal of Artificial Evolution and Applications, Volume 2008, Article ID 685175, 10 pages.
  12. Richalet J., A. Rault, J. L. Testud et J. Japon. 1978. Model predictive heuristic control: application to industrial processes”, Automatica, 14(5), pp. 413-428.
  13. Sedighizadeh D and E. Masehian, 2009. Particle Swarm Optimization Methods, Taxonomy and Applications. International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December 2009. 1793- 8201.
  14. Thomas J., and A. Hansson, 2010. Speed Tracking of Linear Induction Motor: An Analytical Nonlinear Model Predictive Controller. In proceeding of Conference of Control Application CCA'10, Tokyo, Japan, Sep.
  15. Thomas J., and A. Hansson. Speed Tracking of a Linear Induction Motor: Enumerative Nonlinear Model Predictive Control. IEEE Transactions on Control Systems Technology, Vol.21 (5), pp. 1956-1962, Sept. 2013.
  16. Thomas J., J. BUISSON, D. DUMUR, H. GUÉGUEN, 2003. “Predictive Control of Hybrid Systems under a Multi-MLD Formalism”, IFAC Conference on Analysis and Design of Hybrid Systems ADHS 03, pp. 64-69, Saint-Malo, France, Jun. 2003.
  17. Thomas Jean, Didier. DUMUR and Jean BUISSON, 2004. “Predictive Control of Hybrid Systems under a MultiMLD Formalism with State Space Polyhedral Partition”, American Control Conference ACC'2004, Boston.
  18. Thomas J., Sorin Olaru, Jean Buisson and Didier Dumur, 2005. “Genetic Algorithm - Quadratic Programming based Predictive Control for MLD systems”, 15th International Conference on Control Systems and Computer Science CSCS15, 25-27 Mai 2005.
  19. Thomas J., D. Dumur, J. Buisson, H. Guéguen, 2006. "Model predictive control for hybrid systems under a state partition based MLD approach (SPMLD)", Informatics in Control, Automation and Robotics I J. Braz, H. Araujo, A. Vieira et B. Encarnaçao Editeurs, Springer, pp. 217-224, mai 2006.
  20. Thomas Jean, 2012. Analytical non-linear model predictive control for hybrid systems with discrete inputs only. Control Theory & Applications, IET, vol. 6(8), pp. 1080 - 1088, May 2012.
Download


Paper Citation


in Harvard Style

Thomas J. (2015). Integrating Particle Swarm Optimization with Analytical Nonlinear Model Predictive Control for Nonlinear Hybrid Systems . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 294-301. DOI: 10.5220/0005570702940301


in Bibtex Style

@conference{icinco15,
author={Jean Thomas},
title={Integrating Particle Swarm Optimization with Analytical Nonlinear Model Predictive Control for Nonlinear Hybrid Systems},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={294-301},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005570702940301},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Integrating Particle Swarm Optimization with Analytical Nonlinear Model Predictive Control for Nonlinear Hybrid Systems
SN - 978-989-758-122-9
AU - Thomas J.
PY - 2015
SP - 294
EP - 301
DO - 10.5220/0005570702940301