State-parameter Dependency Estimation of Stochastic Time Series using Data Transformation and Parameterization by Support Vector Regression

Elvis Omar Jara Alegria, Hugo Tanzarella Teixeira, Celso Pascoli Bottura

2015

Abstract

This position paper is about the identification of the dependency among parameters and states in regression models of stochastic time series. Conventional recursive algorithms for parameter estimation do not provide good results in models with state-dependent parameters (SDP) because these may have highly non-linear behavior. To detect this dependence using conventional algorithms, we are studying some data transformations that we implement in this paper. Non-parametric relationships among parameters and states are obtained and parameterized using support vector regression. This way we look for a final non-linear structure to solve the SDP identification problem.

References

  1. Alegria, E. J. (2015). Off-line state-dependent parameter models identification using simple fixed interval smoothing. In 12th International Conference on Informatics in Control, Automation and Robotics ICINCO.
  2. Dolby, J. L. (1963). A quick method for choosing a transformation. Technometrics, 5:317-325.
  3. Hu, J., Kumamura, K., and Hirasawa, K. (2001). A quasiARMAX approach to modeling of nonlinear systems. International Journal of Control, 74:1754-1766.
  4. Nørgaard, M., Ravn, O., Poulsen, N. K., and Hansen, L. K. (2000). Neural Networks for Modelling and Control of Dynamic Systems. Springer Verlag, London.
  5. Priestley, M. (1988). Non-linear and non-stationary time series analysis. Academic Press, London.
  6. Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.
  7. Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14:199- 222.
  8. Taylor, C., Pedregal, D., Young, P., and Tych, W. (2007). Environmental time series analysis and forecasting with the captain toolbox. Environmental Modelling & Software, 22(6):797-814.
  9. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York.
  10. Young, P. (2006). Nonlinear system modeling based on nonparametric identification and linear wavelet stimation of sdp models. 45th IEEE Conference on Decision & Control, pages 2523-2528.
  11. Young, P. C. (2011). Recursive Estimation and Time-Series Analysis. Springer-Verlag, 2 edition.
Download


Paper Citation


in Harvard Style

Omar Jara Alegria E., Tanzarella Teixeira H. and Pascoli Bottura C. (2015). State-parameter Dependency Estimation of Stochastic Time Series using Data Transformation and Parameterization by Support Vector Regression . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 342-347. DOI: 10.5220/0005574103420347


in Bibtex Style

@conference{icinco15,
author={Elvis Omar Jara Alegria and Hugo Tanzarella Teixeira and Celso Pascoli Bottura},
title={State-parameter Dependency Estimation of Stochastic Time Series using Data Transformation and Parameterization by Support Vector Regression},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={342-347},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005574103420347},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - State-parameter Dependency Estimation of Stochastic Time Series using Data Transformation and Parameterization by Support Vector Regression
SN - 978-989-758-122-9
AU - Omar Jara Alegria E.
AU - Tanzarella Teixeira H.
AU - Pascoli Bottura C.
PY - 2015
SP - 342
EP - 347
DO - 10.5220/0005574103420347