Multilinear Objective Function-based Clustering
Giovanni Rossi
2015
Abstract
The input of most clustering algorithms is a symmetric matrix quantifying similarity within data pairs. Such a matrix is here turned into a quadratic set function measuring cluster score or similarity within data subsets larger than pairs. In general, any set function reasonably assigning a cluster score to data subsets gives rise to an objective function-based clustering problem. When considered in pseudo-Boolean form, cluster score enables to evaluate fuzzy clusters through multilinear extension MLE, while the global score of fuzzy clusterings simply is the sum over constituents fuzzy clusters of their MLE score. This is shown to be no greater than the global score of hard clusterings or partitions of the data set, thereby expanding a known result on extremizers of pseudo-Boolean functions. Yet, a multilinear objective function allows to search for optimality in the interior of the hypercube. The proposed method only requires a fuzzy clustering as initial candidate solution, for the appropriate number of clusters is implicitly extracted from the given data set.
References
- Aigner, M. (1997). Combinatorial Theory. Springer. Reprint of the 1979 Edition.
- Bensaid, A., Hall, L., Bezdek, J., Clarke, L., Silbiger, M., Arrington, J., and Murtagh, R. (1996). Validityguided (re)clustering with applications to image segmentation. IEEE Trans. on Fuzzy Sys., 4(2):112-123.
- Bezdek, J. and Pal, S. (1992). Fuzzy Models for Pattern Recognition. IEEE Press.
- Boros, E. and Hammer, P. (2002). Pseudo-Boolean optimization. Discrete App. Math., 123:155-225.
- Cottrell, M., Hammer, B., Hasenfuß, A., and Villmann, T. (2006). Batch and median neural gas. Neural Networks, 19(6-7):762-771.
- Crama, Y. and Hammer, P. L. (2011). Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press.
- Du, K.-L. (2010). Clustering: a neural network approach. Neural Networks, 23:89-107.
- Kashef, R. and Kamel, M. S. (2010). Cooperative clustering. Pattern Recognition, 43(6):2315-2329.
- Korte, B. and Vygen, J. (2002). Combinatorial Optimization. Theory and Algorithms. Springer.
- Krishnapuram, R. and Keller, J. (1996). The possibilistic c-means algorithm: insights and recommendations. IEEE Transactions on Fuzzy Systems, 4(3):148-158.
- Lughofer, E. (2008). Extensions of vector quantization for incremental clustering. Pattern Recognition, 41:995- 1011.
- Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic Theory. Oxford University Press.
- Ménard, M. and Eboueya, M. (2002). Extreme physical information and objective function in fuzzy clustering. Fuzzy Sets and Systems, 128:285-303.
- Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, volume 2, pages 849-856. MIT Press.
- Pal, N. and Bezdek, J. (1995). On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3(3):370-379.
- Pardalos, P., Prokopyev, O., and Busygin, S. (2006). Continuous approaches for solving discrete optimization problems. In Appa, G., Pitsoulis, L., and Williams, H., editors, Handbook on Modeling for Discrete Optimization, pages 39-60. Springer.
- Pirró, G. and Euzenat, J. (2010). A feature and information theoretic framework for semantic similarity and relatedness. In Proceedings of The Semantic Web Conference ISWC 2010, pages 615-630. LNCS 6496.
- Rezaee, M., Lelieveldt, B., and Reiber, J. (1998). A new cluster validity index for the fuzzy c-means. Pattern Recognition Letters, 19:237-246.
- Rossi, G. (2015). Continuous set packing problems and near-Boolean functions. arXiv 1509.07986v1. Submitted to ICPRAM 2016.
- Rota, G.-C. (1964). On the foundations of combinatorial theory I: theory of Möbius functions. Z. Wahrscheinlichkeitsrechnung u. verw. Geb., 2:340-368.
- Roubens, M. (1982). Fuzzy clustering algorithms and their cluster validity. European Journal of Operational Research, 10(3):294-301.
- Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, (135):1-54.
- Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1):27-64.
- Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Method for Pattern Analysis. Cambridge University Press.
- Slonim, N., Atwal, S. G., Tkac?ik, G., and Bialek, W. (2005). Information-based clustering. PNAS, 102(51):18297- 18302.
- Valente de Oliveira, J. and Pedrycz, W. (2007). Advances in fuzzy clustering and its applications. Wiley.
- von Luxburg, U., Belkin, M., and Bousquet, O. (2008). Consistency of spectral clustering. The Annals of Statistics, 36(2):555-586.
- Wang, W. and Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158:2095-2117.
- Wu, S. and Chow, T. W. S. (2004). Clustering of the selforganizing map using a cluster validity index based on inter-cluster and intra-cluster density. Pattern Recognition, 37:175-188.
- Xie, X. and Beni, G. (1991). Validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):841-847.
- Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans. on Neural Net., 16(3):645-678.
- Zahid, N., Abouelala, O., Limouri, M., and Essaid, A. (2001). Fuzzy clustering based on k-nearestneighbours rule. Fuzzy Sets and Sys., 120:239-247.
Paper Citation
in Harvard Style
Rossi G. (2015). Multilinear Objective Function-based Clustering . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 141-149. DOI: 10.5220/0005592701410149
in Bibtex Style
@conference{fcta15,
author={Giovanni Rossi},
title={Multilinear Objective Function-based Clustering},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)},
year={2015},
pages={141-149},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005592701410149},
isbn={978-989-758-157-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)
TI - Multilinear Objective Function-based Clustering
SN - 978-989-758-157-1
AU - Rossi G.
PY - 2015
SP - 141
EP - 149
DO - 10.5220/0005592701410149