Fuzzy Modeling of Development of Sheets Number in Different Irrigation Levels of Irrigated Lettuce with Magnetically Treated Water
Fernando F. Putti, Luís Roberto Almeida Gabriel Filho, Camila Pires Cremasco, Antonio Evaldo Klar
2015
Abstract
In the wake of the worldwide water supply crisis, several methods are being used to optimize the use of water, mainly in agriculture, which is the main consuming factor. Magnetically treated water for agriculture is beneficent due to an increase in quality and productivity. Current assay evaluates the effects of magnetically treated water in lettuce cultivations throughout its cycle and determines the intermediate rates by fuzzy models submitted at different reposition rates and assessed throughout the cycles. The assay was conducted in randomized blocks with a 4 x 5 factor scheme, with 5 reposition laminas and 4 dates after transplant. Development was evaluated by fuzzy mathematical modeling and by multiple polynomial regressions. Results were compared with data collected on the field. The highest development occurred for treatments irrigated with magnetically treated water, featuring a greater green aerial phytomass and number of leaves throughout the cycle. The fuzzy model provided a more exact adjustment when compared with results from statistical models.
References
- Aoda, M. I; Fattah, M. A. (2011). The Interactive Effects of Water Magnetic Treatment and Deficit Irrigation on Plant Productivity and Water Use Efficiency of Corn (Zea Mays L.). The Iraqi Journal of Agricultural Sciences, 42, 164-179.
- Bogatin, J., Bondarenko, N. P., Gak, E. Z., Rokhinson, E. E., & Ananyev, I. P. (1999). Magnetic treatment of irrigation water: experimental results and application conditions. Environmental science & technology, 33(8), 1280-1285.
- Buckley, J. J. 2006. Fuzzy Probability and Statistics. Studies in Fuzziness and Soft Computing. 1. ed. vol.196. New York: Springer, 270 p.
- Carozzi, M., Bregaglio, S., Scaglia, B., Bernardoni, E., Acutis, M., & Confalonieri, R. (2013). The development of a methodology using fuzzy logic to assess the performance of cropping systems based on a case study of maize in the Po Valley. Soil Use and Management, 29(4), 576-585.
- Cremasco, C. P., Gabriel Filho, L. R. A., & Cataneo, A. (2010). Metodologia de determinação de funções de pertinência de controla-dores fuzzy para a avaliação energética de empresas de avicultura de postura. Energia na agricultura, 25(1), 21-39.
- Figueiredo, C. C., Ramos, M. L. G., McManus, C. M., & de Menezes, A. M. (2012). Mineralização de esterco de ovinos e sua influência na produção de alface. Horticultura Brasileira, 30(1), 175-179.
- Gabriel Filho, L. R., Cremasco, C. P., Putti, F. F., & Chacur, M. G. (2011). Application of fuzzy logic for the evaluation of livestock slaughtering. Engenharia Agrícola, 31(4), 813-825.
- Gehr, R., Zhai, Z. A., Finch, J. A., & Rao, S. R. (1995). Reduction of soluble mineral concentrations in CaSO 4 saturated water using a magnetic field. Water Research, 29(3), 933-940.
- Hair, J. F. Anderson, R. E.; Black, W.C.; Tatham, R.L. 2005. Análise Multivariada de Dados. Porto Alegre: Bookman, 5th. edition
- Hasson, D., & Bramson, D. (1985). Effectiveness of magnetic water treatment in suppressing calcium carbonate scale deposition. Industrial & Engineering Chemistry Process Design and Development, 24(3), 588-592.
- Herzog, R. E., Shi, Q., Patil, J. N., & Katz, J. L. (1989). Magnetic water treatment: the effect of iron on calcium carbonate nucleation and growth. Langmuir, 5(3), 861- 867.
- Hirata, A. C. S., Hirata, E. K., Guimarães, E. C., Rós, A. B., & Monquero, P. A. (2014). Plantio direto de alface americana sobre plantas de cobertura dessecadas ou roçadas. Bragantia, 73(2), 178-183.
- Hozayn, M., & Qados, A. M. S. A. (2010). Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agriculture and Biology Journal of North America, 1(4), 671-676.
- Joshi, K. M., & Kamat, P. V. (1966). Effect of magnetic field on the physical properties of water. J. Ind. Chem. Soc, 43, 620-622.
- Katsuki, A., Tokunaga, R., Watanabe, S. I., & Tanimoto, Y. (1996). The Effect of High Magnetic Field on the Crystal Growth of Benzophenone. Chemistry Letters, (8), 607-608.
- Khoshravesh, M., Mostafazadeh Fard, B., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use and Management, 27(4), 515-522.
- Kronenberg, K. J. (1985). Experimental evidence for effects of magnetic fields on moving water. Magnetics, IEEE Transactions on, 21(5), 2059-2061.
- Lopes, G. N., Kroetz, V. J., Alves, J. M. A., & Smiderle, O. J. (2010). Irrigação Magnética. Revista Agro@ mbiente On-line, 1(1), 1-8.
- Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural water management, 96(8), 1229-1236.
- Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), 1- 13.
- Ohse, S., Dourado-Neto, D., Manfron, P. A., & Santos, O. S. D. (2001). Qualidade de cultivares de alface produzidos em hidroponia. Scientia Agrícola, 58(1), 181-185.
- Ozeki, S., Miyamoto, J., Ono, S., Wakai, C., & Watanabe, T. (1996). Water-solid interactions under steady magnetic fields: Magnetic-field-induced adsorption and desorption of water. The Journal of Physical Chemistry, 100(10), 4205-4212.
- Pagano, M.; Gauvreau, K. 2012. Princípios de Bioestatística. São Paulo: Pioneira Thomson Learning.
- Polat, S., Aksoy, A., & Unlu, K. (2015). A Fuzzy Rule Based Remedial Priority Ranking System for Contaminated Sites. Groundwater, 53(2), 317-327.
- Ross, T. J. (2009). Fuzzy logic with engineering applications. John Wiley & Sons.
- Sala, F. C., & Costa, C. P. D. (2008). Gloriosa': cultivar de alface americana tropicalizada. Horticultura Brasileira, 26(3), 409-410.
- Weber, C., Dai Pra, A. L., Passoni, L. I., Rabal, H. J., Trivi, M., & Poggio Aguerre, G. J. (2014). Determination of maize hardness by biospeckle and fuzzy granularity. Food science & nutrition, 2(5), 557-564.
- Yeh, C. T. (2009). Weighted trapezoidal and triangular approximations of fuzzy numbers. Fuzzy Sets and Systems, 160(21), 3059-3079.
- Zavala, A. A., Bolfarine, H., & de Castro, M. (2007). Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models. Annals of the Institute of Statistical Mathematics, 59(3), 515-530.
- Zhang, T., Page, T., Heathwaite, L., Beven, K., Oliver, D. M., & Haygarth, P. M. (2013). Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use and Management, 29(s1), 187-198.
Paper Citation
in Harvard Style
Putti F., Gabriel Filho L., Cremasco C. and Klar A. (2015). Fuzzy Modeling of Development of Sheets Number in Different Irrigation Levels of Irrigated Lettuce with Magnetically Treated Water . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 162-169. DOI: 10.5220/0005599701620169
in Bibtex Style
@conference{fcta15,
author={Fernando F. Putti and Luís Roberto Almeida Gabriel Filho and Camila Pires Cremasco and Antonio Evaldo Klar},
title={Fuzzy Modeling of Development of Sheets Number in Different Irrigation Levels of Irrigated Lettuce with Magnetically Treated Water},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)},
year={2015},
pages={162-169},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005599701620169},
isbn={978-989-758-157-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)
TI - Fuzzy Modeling of Development of Sheets Number in Different Irrigation Levels of Irrigated Lettuce with Magnetically Treated Water
SN - 978-989-758-157-1
AU - Putti F.
AU - Gabriel Filho L.
AU - Cremasco C.
AU - Klar A.
PY - 2015
SP - 162
EP - 169
DO - 10.5220/0005599701620169