Diffusion Bases Dimensionality Reduction

Alon Schclar, Amir Averbuch

2015

Abstract

The overflow of data is a critical contemporary challenge in many areas such as hyper-spectral sensing, information retrieval, biotechnology, social media mining, classification etc. It is usually manifested by a high-dimensional representation of data observations. In most cases, the information that is inherent in highdimensional datasets is conveyed by a small number of parameters that correspond to the actual degrees of freedom of the dataset. In order to efficiently process the dataset, one needs to derive these parameters by embedding the dataset into a low-dimensional space. This process is commonly referred to as dimensionality reduction or feature extraction. We present a novel algorithm for dimensionality reduction – diffusion bases – which explores the connectivity among the coordinates of the data and is dual to the diffusion maps algorithm. The algorithm reduces the dimensionality of the data while maintaining the coherency of the information that is conveyed by the data.

References

  1. Bourgain, J. (1985). On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathematics, 52:46-52.
  2. Candes, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489-509.
  3. Chung, F. R. K. (1997). Spectral Graph Theory. AMS Regional Conference Series in Mathematics, 92.
  4. Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis: special issue on Diffusion Maps and Wavelets, 21:5-30.
  5. Coifman, R. R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. (2005). Geometric diffusions as a tool for harmonics analysis and structure definition of data: Diffusion maps. In Proceedings of the National Academy of Sciences, volume 102, pages 7432-7437.
  6. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289-1306.
  7. Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping using the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):214-225.
  8. Hein, M. and Audibert, Y. (2005). Intrinsic dimensionality estimation of submanifolds in Euclidean space. In Proceedings of the 22nd International Conference on Machine Learning, pages 289-296.
  9. Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of lipshitz mapping into hilbert space. Contemporary Mathematics, 26:189-206.
  10. Keller, S. L. Y. and Coifman, R. R. (2006). Data fusion and multi-cue data matching by diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1784-1797.
  11. Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic Press, London.
  12. Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. SCIENCE, 290:2323-2326.
  13. Schclar, A., Averbuch, A., Hochman, K., Rabin, N., and Zheludev, V. (2010). A diffusion framework for detection of moving vehicles. Digital Signal Processing,, 20(1):111-122.
  14. Schclar, A. and Rokach, L. (ICEIS 2009). Random projection ensemble classifiers. Lecture Notes in Business Information Processing, Proceedings of the 11th Conference on Enterprise Information System.
  15. Schclar, A., Rokach, L., and Amit, A. (2012). Diffusion ensemble classifiers. In Proceedings of the 4th International Conference on Neural Computation Theory and Applications (NCTA 2012), Barcelona, Spain.
  16. Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323.
  17. log(e) Figure 1: A plot of Se as a function of e on a log-log scale.
Download


Paper Citation


in Harvard Style

Schclar A. and Averbuch A. (2015). Diffusion Bases Dimensionality Reduction . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 151-156. DOI: 10.5220/0005625301510156


in Bibtex Style

@conference{ncta15,
author={Alon Schclar and Amir Averbuch},
title={Diffusion Bases Dimensionality Reduction},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015)},
year={2015},
pages={151-156},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005625301510156},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015)
TI - Diffusion Bases Dimensionality Reduction
SN - 978-989-758-157-1
AU - Schclar A.
AU - Averbuch A.
PY - 2015
SP - 151
EP - 156
DO - 10.5220/0005625301510156