Multi-modal Mu-calculus Semantics for Knowledge Construction

Susumu Yamasaki, Mariko Sasakura

2015

Abstract

This position paper aims at setting a new semantics for multi-modal mu-calculus to represent interactive states where abstract actions may be applied to. A least fixed point formula may be available to denote states allowing interaction. A simple algebraic representation for interactive states can be definable. For communication between human and machinery, a modality is reserved. In applicative task domains, knowledge construction is focused on with respect to interactive action applications through communications. Panel touch behaviour on iDevice as practice, URL references as functions and grammatical rule applications for sequential effects are studied, as knowledge construction technologies. These views coherent with abstract state machine are finally related to recent trends as semiring in algebraic structure and coalgebra for streams as sequential knowledge structures. A refinement of interactive techniques is positioned into a formal approach to multi-modal logic, applicable to some practices.

References

  1. Bertolissi, C., Cirstea, H., and Kirchner, C. (2006). Expressing combinatory reduction systems derivations in the rewriting calculus. HigherOrder.Symbolic.Comput., 19(4):345-376.
  2. Cardelli, L. and Gordon, A. (2000). Mobile ambients. Theoret.Comput.Sci., 240(1):177-213.
  3. Chapey, R. (2001). Language Intervention Strategies in Aphasia and Related Neurogenic Communication Disorder. Lippincott Williams & Wilkins.
  4. Droste, M., Kuich, W., and Vogler, H. (2009). Handbook of Weighted Automata. Springer.
  5. Genesereth, M. and Nilsson, N. (1987). Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers.
  6. Giordano, L., Martelli, A., and Schwind, C. (2000). Ramification and causality in a modal action logic. J.Log.Comput., 10(5):625-662.
  7. Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concurrency. J.ACM, 32(1):137- 161.
  8. Jackson, P. (1989). The Complete Origami Course. Gallery Books.
  9. Kasai, T. (1970). An hierarchy between context-free and context-sensitive languages. J.Comput.Syst.Sci., 4(5):492-508.
  10. Kucera, A. and Esparza, J. (2003). A logical viewpoint on process-algebraic quotients. J.Log.Comput., 13(6):863-880.
  11. Kurz, A. (1989). Coalgebra and Modal Logic. CWI, Amsterdam.
  12. Merro, M. and Nardelli, F. (2005). Behavioural theory for mobile ambients. J.ACM., 52(6):961-1023.
  13. Milner, R. (1999). Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press.
  14. Mosses, P. (1992). Action Semantics. Cambridge University Press.
  15. Reiter, R. (2001). Knowledge in Action. MIT Press.
  16. Reps, T., Schwoon, S., and Somesh, J. (2005). Weighted pushdown systems and their application to interprocedural data flow analysis. Sci.Comput.Program., 58(1- 2):206-263.
  17. Rutten, J. (2001). On Streams and Coinduction. CWI, Amsterdam.
  18. Sasakura, M., Tanaka, K., Yamashita, E., Tanabe, H., and Kawakami, T. (2013). A bi-phase model of folding origami interactively with gap representation. In 17th International Conference on Information Visualisation: Proceedings, pages 494-498.
  19. van der Hoek, W., Roberts, M., and Wooldridge, M. (2005). A logic for strategic reasoning. In 4th AAMAS: Proceedings, pages 157-164.
  20. Venema, Y. (2006). Automata and fixed point logic: A coalgebraic perspective. Inf.Comput., 204(4):637-678.
  21. Venema, Y. (2008). Lectures on the Modal Mu-Calculus. ILLC, Amsterdam.
  22. Winter, J., Marcello, B., Bonsangue, M., and Rutten, J. (2013). Coalgebraic characterizations of context-free languages. Formal Methods in Computer Science, 9(3):1-39.
  23. Winter, J., Marcello, B., Bonsangue, M., and Rutten, J. (2015). Cntext-free coalgebra. J.Comput.Syst.Sci., 81(5):911-939.
  24. Yamasaki, S. (2006). Logic programming with default, weak and strict negations. Theory.Pract.Log.Program., 6(6):737-749.
  25. Yamasaki, S. (2010). A construction of logic-constrained functions with respect to awareness. In LRBA, MALLOW: Proceedings, pages 84-98.
Download


Paper Citation


in Harvard Style

Yamasaki S. and Sasakura M. (2015). Multi-modal Mu-calculus Semantics for Knowledge Construction . In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KEOD, (IC3K 2015) ISBN 978-989-758-158-8, pages 358-363. DOI: 10.5220/0005628703580363


in Bibtex Style

@conference{keod15,
author={Susumu Yamasaki and Mariko Sasakura},
title={Multi-modal Mu-calculus Semantics for Knowledge Construction},
booktitle={Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KEOD, (IC3K 2015)},
year={2015},
pages={358-363},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005628703580363},
isbn={978-989-758-158-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KEOD, (IC3K 2015)
TI - Multi-modal Mu-calculus Semantics for Knowledge Construction
SN - 978-989-758-158-8
AU - Yamasaki S.
AU - Sasakura M.
PY - 2015
SP - 358
EP - 363
DO - 10.5220/0005628703580363