Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components
M. Tangermann, J. Reis, A. Meinel
2015
Abstract
The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.
References
- Boulay, C., Sarnacki, W., Wolpaw, J., and McFarland, D. (2011). Trained modulation of sensorimotor rhythms can affect reaction time. Clinical Neurophysiology, 122(9):1820 - 1826.
- Castan˜o-Candamil, J. S., Meinel, A., Dähne, S., and Tangermann, M. (2015a). Probing meaningfulness of oscillatory EEG components with bootstrapping, label noise and reduced training sets. In Proceedings of the Annual International IEEE EMBC Conference 2015, page (in press), Milano. IEEE.
- Castan˜o-Candamil, S., Meinel, A., Reis, J., and Tangermann, M. (2015b). P186. correlates to influence user performance in a hand motor rehabilitation task. Clinical Neurophysiology, 126(8):e166 - e167.
- Dähne, S., Meinecke, F. C., Haufe, S., Höhne, J., Tangermann, M., Müller, K.-R., and Nikulin, V. V. (2014). SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. Neuroimage, 86(0):111-122.
- Delorme, A., Mullen, T., Kothe, C., Acar, Z. A., BigdelyShamlo, N., Vankov, A., and Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced eeg processing. Computational intelligence and neuroscience, 2011:10.
- Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., and Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87:96-110.
- Meinel, A., Castan˜o-Candamil, J. S., Dähne, S., Reis, J., and Tangermann, M. (2015). EEG band power predicts single-trial reaction time in a hand motor task. In Proc. Int. IEEE Conf. on Neural Eng. (NER), pages 182-185, Montpellier, France. IEEE.
- Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and Blankertz, B. (2008). Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. Journal of Neuroscience Methods, 167(1):82-90.
- Parra, L. C., Spence, C. D., Gerson, A. D., and Sajda, P. (2005). Recipes for the linear analysis of EEG. NeuroImage, 28(2):326-341.
- Pfurtscheller, G. and Da Silva, F. L. (1999). Eventrelated EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology, 110(11):1842-1857.
- Pfurtscheller, G., Stancák, A., and Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band - an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24(1):39-46.
- Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., Celnik, P. A., and Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences.
- Romei, V., Brodbeck, V., Michel, C., Amedi, A., PascualLeone, A., and Thut, G. (2008). Spontaneous fluctuations in posterior a-band EEG activity reflect variability in excitability of human visual areas. Cerebral cortex, 18(9):2010-2018.
- Schubert, R., Haufe, S., Blankenburg, F., Villringer, A., and Curio, G. (2009). Now you'll feel it, now you won't: EEG rhythms predict the effectiveness of perceptual masking. Journal of Cognitive Neuroscience, 21(12):2407-2419.
- Thut, G., Nietzel, A., Brandt, S. A., and Pascual-Leone, A. (2006). a-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. The Journal of Neuroscience, 26(37):9494-9502.
- van Dijk, H., Schoffelen, J.-M., Oostenveld, R., and Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. The Journal of Neuroscience, 28(8):1816-1823.
Paper Citation
in Harvard Style
Tangermann M., Reis J. and Meinel A. (2015). Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components . In Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX, ISBN 978-989-758-161-8, pages 32-38. DOI: 10.5220/0005663100320038
in Bibtex Style
@conference{neurotechnix15,
author={M. Tangermann and J. Reis and A. Meinel},
title={Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components},
booktitle={Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,},
year={2015},
pages={32-38},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005663100320038},
isbn={978-989-758-161-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,
TI - Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components
SN - 978-989-758-161-8
AU - Tangermann M.
AU - Reis J.
AU - Meinel A.
PY - 2015
SP - 32
EP - 38
DO - 10.5220/0005663100320038