Modelling Processes in Fractalized Hospitals with Multiagent Systems and Data Analytics

Marc Premm, Martin Riekert,, Achim Klein, Stefan Kirn

2015

Abstract

Most approaches for modelling processes neglect the high degree of distributed decision making in the hospital domain where processes are coordinated by local authorities. The paradigm of fractal organizations combined with the decentralized characteristics of distributed Artificial Intelligence may help to understand and model the problem. This paper presents ongoing research and contributes a meta-model for modelling processes in hospitals with multiagent systems as fractals of a logistics supply network and incorporates data analytics methods to identify dependencies between different fractals. The presented approach is evaluated by analyzing a hospital scenario involving multiple fractals in a patient-centric process.

References

  1. Van Der Aalst, W.M.P. et al., 2009. Prom: The process mining toolkit. In Business Process Management Demonstration Track.
  2. Boser, B., Guyon, I. & Vapnik, V., 1992. A training algorithm for optimal margin classifiers. In 5th Annual ACM Workshop on Computational Learning Theory. pp. 144-152.
  3. Cleven, A.K. et al., 2014. Process management in hospitals: an empirically grounded maturity model. Business Research, 7, pp.191-216.
  4. Davis, R. & Smith, R.G., 1983. Negotiation as a metaphor for distributed problem solving. Artificial Intelligence, 20(1), pp.63-109.
  5. Domschke, W., 2008. Grundlagen der Betriebswirtschaftslehre - Eine Einführung aus entscheidungsorientierter Sicht 4th ed., Springer.
  6. Drucker, H. et al., 1997. Support vector regression machines. Neural Information Processing Systems, 9, pp.155-161.
  7. Fox, M.S., 1981. An organizational view of distributed systems. IEEE Transactions on Systems, Man and Cybernetics, 11(1), pp.70-80.
  8. Gasser, L., 1992. DAI Approaches to Coordination. In N. M. Avouris & L. Gasser, eds. Distributed Artificial Intelligence: Theory and Practice. Kluwer, pp. 31-51.
  9. Haraden, C. & Resar, R., 2004. Patient flow in hospitals: understanding and controlling it better. Frontiers of health services management, 20(4), pp.3-15.
  10. Joachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. In 10th European Conference on Machine Learning. Lecture Notes in Computer Science. pp. 137-142.
  11. Malone, T.W., 1987. Modeling Coordination in Organizations and Markets. Management Science, 33(10), pp.1317-1332.
  12. Manyika, J. et al., 2011. Big data: The next frontier for innovation, competition, and productivity,
  13. Mitchell, T., 1997. Machine Learning, McGraw Hill.
  14. Murray, J., Widmer, T. & Kirn, S., 2014. Agent-based process coordination among hospital units. In Multikonferenz Wirtschaftsinformatik. pp. 763-774.
  15. Pfohl, H.-C., 2004. Logistiksysteme - Betriebswirtschaftliche Grundlagen 7th ed., Springer.
  16. Premm, M. & Kirn, S., 2015. From Cooperating Agents to Cooperating Multiagent Systems: A Survey. In Proceedings of the 13th German Conference on Multiagent System Technologies. Springer.
  17. Scheer, A.-W. & Nüttgens, M., 2000. ARIS Architecture and Reference Models for Business Process Management. In Business Process Management: Models, Techniques, and Empirical Studies. pp. 376- 389.
  18. Scholl, A., 2008. Grundlagen der modellgestützten Planung. In D. Arnold et al., eds. Handbuch Logisitk. Heidelberg: Springer.
  19. Smola, a J. & Scholkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing, 14, pp.199-222.
  20. Stewart, G., 1997. Supply Chain Operations Reference Model ( SCOR ): the First Framework for Integrated Supply-Chain Management. Logistics Information Management, 10(2), pp.62-67.
  21. Stockheim, T. et al., 2004. How to build a multi-multiagent system the agent.enterprise approach. In ICEIS 2004 - Proceedings of the Sixth International Conference on Enterprise Information Systems. pp. 364-371.
  22. Tapscott, D. & Caston, A., 1993. Paradigm Shift: The New Promise of Information Technology, New York: McGraw Hill.
  23. Vanberkel, P.T. et al., 2010. A Survey of Health Care Models that Encompass Multiple Departments. International Journal of Health Management and Information, 1.
  24. Vapnik, V.N., 2000. The nature of statistical learning theory, Springer.
  25. Warnecke, H.-J., 1993. Revolution der Unternehmenskultur 2nd ed., Heidelberg: Springer.
  26. Woelk, P.-O. et al., 2006. Agent.Enterprise in a Nutshell. In S. Kirn et al., eds. Multiagent Engineering - Theory and Applications in Enterprises. Heidelberg: Springer.
Download


Paper Citation


in Harvard Style

Premm M., Riekert, M., Klein A. and Kirn S. (2015). Modelling Processes in Fractalized Hospitals with Multiagent Systems and Data Analytics . In Proceedings of the Fourth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS, ISBN 978-989-758-152-6, pages 61-68. DOI: 10.5220/0005889500610068


in Bibtex Style

@conference{ictrs15,
author={Marc Premm and Martin Riekert, and Achim Klein and Stefan Kirn},
title={Modelling Processes in Fractalized Hospitals with Multiagent Systems and Data Analytics},
booktitle={Proceedings of the Fourth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,},
year={2015},
pages={61-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005889500610068},
isbn={978-989-758-152-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,
TI - Modelling Processes in Fractalized Hospitals with Multiagent Systems and Data Analytics
SN - 978-989-758-152-6
AU - Premm M.
AU - Riekert, M.
AU - Klein A.
AU - Kirn S.
PY - 2015
SP - 61
EP - 68
DO - 10.5220/0005889500610068