MINERVA Project, mid- To near Infrared Spectroscopy for Improved Medical Diagnostics

Valery Naranjo

2015

Abstract

The main idea behind the MINERVA project is the recognition that for the first time, through breakthroughs in photonic technology, it is possible to open the mid-IR electromagnetic spectrum (3-12 m) for rapid medical imaging. In particular this could greatly improve the chances of early cancer diagnosis. MINERVA will exploit and develop the advances in soft glass optical fibres, acousto-optic (AO) modulator design, crystal growth, fibre lasers, supercontinuum sources and detectors in the mid-IR. Two specific high impact applications will be addressed: high volume pathology screening (i.e. automated microscopebased examination of routine patient samples) and human skin surface examination (i.e. non-invasive investigation of suspected skin cancer). In an Integrating Project of this scale it is possible to pursue several targets in parallel, each of which alone brings significant benefits. Together they could begin a new branch of the bio-medical imaging industry.

References

  1. Minerva | MId- to NEaR infrared spectroscopy for improVed medical diAgnostics. (http://minerva-project.eu/) Accessed: 2015-05-22.
  2. Seddon, A.B.: Mid-infrared (IR)-A hot topic: The potential for using mid-IR light for noninvasive early detection of skin cancer in vivo. Physica Status Solidi (B) 250 (2013) 1020- 1027
  3. Oladeji, A., Sojka, L., Tang, Z., Furniss, D., Phillips, A., Seddon, A., Benson, T., Sujecki, S.: Numerical investigation of mid-infrared emission from Pr3+ doped GeAsGaSe fibre. Optical and Quantum Electronics 46 (2014) 593-602
  4. Sakr, H., Tang, Z., Furniss, D., Sojka, L., Moneim, N., Barney, E., Sujecki, S., Benson, T., Seddon, A.: Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber. In: SPIE BiOS, International Society for Optics and Photonics (2014) 89380V
  5. Sojka, L., Tang, Z., Furniss, D., Sakr, H., Oladeji, A., Beres-Pawlik, E., Dantanarayana, H., Faber, E., Seddon, A., Benson, T., et al.: Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad. Optical Materials 36 (2014) 1076-1082
  6. Sujecki, S.: An efficient algorithm for steady state analysis of fibre lasers operating under cascade pumping scheme. International Journal of Electronics and Telecommunications 60 (2014) 143-149
  7. Dantanarayana, H.G., Abdel-Moneim, N., Tang, Z., Sojka, L., Sujecki, S., Furniss, D., Seddon, A.B., Kubat, I., Bang, O., Benson, T.M.: Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation. Optical Materials Express 4 (2014) 1444-1455
  8. Seddon, A.: Mid-infrared photonics for early cancer diagnosis. In: Transparent Optical Networks (ICTON), 2014 16th International Conference on, IEEE (2014) 1-4
  9. Sakr, H., Furniss, D., Tang, Z., Sojka, L., Moneim, N., Barney, E., Sujecki, S., Benson, T., Seddon, A.: Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenidechalcogenide bulk glasses and PL of optically-clad fiber. Optics express 22 (2014) 21236- 21252
  10. Sujecki, S., Oladeji, A., Sojka, L., Phillips, A., Seddon, A., Benson, T., Sakr, H., Tang, Z., Furniss, D., Scholle, K., et al.: Modelling and design of mir chalcogenide glass fibre lasers. In: Numerical Simulation of Optoelectronic Devices (NUSOD), 2014 14th International Conference on, IEEE (2014) 111-112
  11. Agger, C., Kubat, I., Møller, U., Moselund, P.M., Petersen, C., Napier, B., Seddon, A., Sujecki, S., Benson, T., Farries, M., et al.: Numerical demonstration of 3-12µm supercontinuum generation in large-core step-index chalcogenide fibers pumped at 4.5µm. In: Nonlinear Optics, Optical Society of America (2013) NW4A-09
  12. Møller, U., Yu, Y., Petersen, C.R., Kubat, I., Mechin, D., Brilland, L., Troles, J., LutherDavies, B., Bang, O.: High Average Power Mid-infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber. In: Nonlinear Photonics, Optical Society of America (2014) JM5A-54
  13. Møller, U., Yu, Y., Kubat, I., Petersen, C.R., Gai, X., Brilland, L., M échin, D., Caillaud, C., Troles, J., Luther-Davies, B., et al.: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics express 23 (2015) 3282-3291
  14. Thomsen, C.L., Nielsen, F.D., Johansen, J., Pedersen, C., Moselund, P.M., Møller, U., Sørensen, S.T., Larsen, C., Bang, O.: New horizons for supercontinuum light sources: from UV to mid-IR. In: SPIE OPTO, International Society for Optics and Photonics (2013) 86370T
  15. Moller, U., Bang, O.: Intensity noise of normal-pumped picosecond supercontinuum generation. In: Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, IEEE (2013) 1
  16. Kubat, I., Agger, C., Moselund, P., Bang, O.: Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser. In: Lasers and ElectroOptics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, IEEE (2013) 1
  17. Kubat, I., Agger, C., Moselund, P.M., Bang, O.: Optimized ZBLAN fiber for efficient and broadband mid-infrared supercontinuum generation through direct pumping at 1550nm. In: 1st International Workshop on Spatio-Temporal Complexity in Optical Fibers. (2013)
  18. Kubat, I., Agger, C.S., Moselund, P.M., Bang, O.: Mid-infrared supercontinuum generation to 4.5 µm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm. JOSA B 30 (2013) 2743-2757
  19. Moselund, P., Petersen, C., Leick, L., Seidelin Dam, J., Tidemand-Lichtenberg, P., Pedersen, C.: Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy. In: Advanced Solid State Lasers, Optical Society of America (2013) JTh5A-9
  20. Møller, U.V., Sørensen, S.T., Petersen, C.R., Kubat, I., Moselund, P.M., Bang, O.: Supercontinuum generation from ultraviolet to mid-infrared. (In: 15th Conference on Optical Fibers and Their Applications (OFTA 2014))
  21. Kubat, I., Rosenberg Petersen, C., Møller, U.V., Seddon, A., Benson, T., Brilland, L., M échin, D., Moselund, P.M., Bang, O.: Thulium pumped mid-infrared 0.9-9µm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Optics express 22 (2014) 3959-3967
  22. Kubat, I., Petersen, C.R., Møller, U., Seddon, A., Benson, T., Brilland, L., M échin, D., Moselund, P., Bang, O.: Mid-infrared supercontinuum generation in concatenated fluoride and chalcogenide glass fibers covering more than three octaves. In: CLEO: Science and Innovations, Optical Society of America (2014) STh3N-1
  23. Kubat, I., Agger, C.S., Møller, U., Seddon, A.B., Tang, Z., Sujecki, S., Benson, T.M., Furniss, D., Lamrini, S., Scholle, K., et al.: Mid-infrared supercontinuum generation to 12.5 µm in large na chalcogenide step-index fibres pumped at 4.5µm. Optics express 22 (2014) 19169- 19182
  24. Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., et al.: Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics 8 (2014) 830-834
  25. Martijn, H., Asplund, C., von Würtemberg, R.M., Malm, H.: High performance MWIR type-II superlattice detectors. In: Proc. of SPIE Vol. Volume 8704. (2013) 87040Z-1
  26. Kastl, L., Rommel, C.E., Kemper, B., Schnekenburger, J.: Standardized cell samples for midir technology development. In: SPIE BiOS, International Society for Optics and Photonics (2015) 931507
  27. Naranjo, V., Villanueva, E., Lloyd, G.R., Stone, N., Lopez-Mir, F., Alcaniz, M.: Stained and infrared image registration as first step for cancer detection. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference on, IEEE (2014) 420-423
  28. López-Mir, F., Naranjo, V., Morales, S., Angulo, J.: Probability density function of object contours using regional regularized stochastic watershed. In: Image Processing (ICIP), 2014 IEEE International Conference on, IEEE (2014) 4762-4766
  29. Stevens, G., Woodbridge, T.: Development of low loss robust soft-glass fiber splices. In: Workshop on Specialty Optical Fibers and their Applications, Optical Society of America (2013) W3-21
  30. Markos, C., Kubat, I., Bang, O.: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Scientific reports 4 (2014)
  31. Valle, S., Ward, J., Pannell, C., Johnson, N.: Acousto-optic tunable filter for imaging application with high performance in the ir region. In: SPIE OPTO, International Society for Optics and Photonics (2015) 93590E-93590E
  32. Maragkou, M.: Supercontinuum: Reaching the mid-infrared. Nature Photonics 8 (2014) 746-746
  33. Steinmeyer, G., Skibina, J.S.: Supercontinuum: Entering the mid-infrared. Nature Photonics 8 (2014) 814-815
Download


Paper Citation


in Harvard Style

Naranjo V. (2015). MINERVA Project, mid- To near Infrared Spectroscopy for Improved Medical Diagnostics . In European Project Space on Intelligent Systems, Pattern Recognition and Biomedical Systems - EPS Lisbon, ISBN 978-989-758-095-6, pages 53-69. DOI: 10.5220/0006162400530069


in Bibtex Style

@conference{eps lisbon15,
author={Valery Naranjo},
title={MINERVA Project, mid- To near Infrared Spectroscopy for Improved Medical Diagnostics},
booktitle={European Project Space on Intelligent Systems, Pattern Recognition and Biomedical Systems - EPS Lisbon,},
year={2015},
pages={53-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006162400530069},
isbn={978-989-758-095-6},
}


in EndNote Style

TY - CONF
JO - European Project Space on Intelligent Systems, Pattern Recognition and Biomedical Systems - EPS Lisbon,
TI - MINERVA Project, mid- To near Infrared Spectroscopy for Improved Medical Diagnostics
SN - 978-989-758-095-6
AU - Naranjo V.
PY - 2015
SP - 53
EP - 69
DO - 10.5220/0006162400530069