Quantitative Estimation of Long-living Fluorescent Molecules from Temporal Fluorescence Intensity Data Corrupted by Nonzero-mean Noise

Sofia Startceva, Jerome G. Chandraseelan, Ari Visa, Andre S. Ribeiro

2016

Abstract

We present a new quantitative method of estimation of fluorescent molecule numbers from time-lapse, single-cell, fluorescence microscopy data. Its main aim is to eradicate backward propagation of noise, which is present in previous methods. The method is first validated using Monte Carlo simulations. These tests show that when the time-lapse data are corrupted with negative noise, the method obtains significantly more precise results than current techniques. The applicability of the method is demonstrated on novel time-lapse, single-cell measurements of fluorescently tagged ribonucleic acid (RNA) molecules. Interestingly, we find that the intervals inferred by the new method have the same mean but reduced variability when compared to the previously existing method, which, in accordance to human observers, is a more accurate estimation.

References

  1. Chowdhury, S. et al., 2012. An interacting multiple model filter-based autofocus strategy for confocal time-lapse microscopy. J.Microscopy, 245, pp.265-75.
  2. Chowdhury, S. et al., 2013. Cell segmentation by multiresolution analysis and maximum likelihood estimation (MAMLE). BMC Bioinformatics, 14 (Suppl 10), p.S8.
  3. DeHaseth, P.L., Zupancic, M.L. and Record, M.T., 1998. RNA polymerase-promoter interactions: The comings and goings of RNA polymerase. J Bacteriology, 180(12), pp.3019-25.
  4. Elowitz, M.B. et al., 2002. Stochastic gene expression in a single cell. Science, 297(5584), pp.1183-6.
  5. Golding, I. et al., 2005. Real-time kinetics of gene activity in individual bacteria. Cell, 123(6), pp.1025-36.
  6. Golding, I. and Cox, E.C., 2004. RNA dynamics in live Escherichia coli cells. Proc. of the National Academy of Sciences of the USA, 101(31), pp.11310-5.
  7. Gupta, A., Lloyd-Price, J., Neeli-Venkata, R., et al., 2014. In Vivo Kinetics of Segregation and Polar Retention of MS2-GFP-RNA Complexes in Escherichia coli. Biophysical J., 106(9), pp.1928-37.
  8. Gupta, A., Lloyd-Price, J., Oliveira, S.M.D., et al., 2014. Robustness of the division symmetry in Escherichia coli and functional consequences of symmetry breaking. Physical Biology, 11(6), p.066005.
  9. Häkkinen, A. and Ribeiro, A.S., 2014. Estimation of GFPtagged RNA numbers from temporal fluorescence intensity data. Bioinformatics, 31(1), pp.69-75.
  10. Häkkinen, A. et al., 2013. CellAging: A tool to study segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics, 29(13), pp.1708-9.
  11. Häkkinen, A. et al., 2014. Estimation of fluorescencetagged RNA numbers from spot intensities. Bioinformatics, 30(8), pp.1146-53.
  12. Kandhavelu, M. et al., 2012. Single-molecule dynamics of transcription of the lar promoter. Physical Biology, 9(2), p.026004.
  13. Kentner, D. and Sourjik, V., 2006. Spatial organization of the bacterial chemotaxis system. Current Opinion in Microbiology, 9(6), pp.619-24.
  14. Lindner, A.B. et al., 2008. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. of the National Academy of Sciences of the USA, 105(8), pp.3076-81.
  15. Lloyd-Price, J. et al., 2012. Asymmetric disposal of individual protein aggregates in Escherichia coli, one aggregate at a time. J.Bacteriology, 194(7), pp.1747- 52.
  16. Lutz, R. and Bujard, H., 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), pp.1203-10.
  17. Maisonneuve, E., Ezraty, B. and Dukan, S., 2008. Protein aggregates: An aging factor involved in cell death. J.Bacteriology, 190(18), pp.6070-5.
  18. McAdams, H.H. and Arkin, A., 1997. Stochastic mechanisms in gene expression. Proc. of the National Academy of Sciences of the USA, 94(3), pp.814-9.
  19. McClure, W.R., 1985. Mechanism and control of transcription initiation in prokaryotes. Ann. Rev. of Biochemistry, 54, pp.171-204.
  20. Muthukrishnan, A.-B. et al., 2012. Dynamics of transcription driven by the tetA promoter, one event at a time, in live Escherichia coli cells. Nucleic Acids Research, 40(17), pp.8472-83.
  21. Parkinson, J.S., Ames, P. and Studdert, C.A., 2005. Collaborative signaling by bacterial chemoreceptors. Current opinion in microbiology, 8(2), pp.116-21.
  22. Rao, C. V, Wolf, D.M. and Arkin, A.P., 2002. Control, exploitation and tolerance of intracellular noise. Nature, 420(6912), pp.231-7.
  23. Raser, J.M. and O'Shea, E.K., 2005. Noise in gene expression: origins, consequences, and control. Science, 309(5743), pp.2010-3.
  24. Rutter, G.A. et al., 1998. Real-time imaging of gene expression in single living cells. Chemistry and biology, 5(11), pp.R285-90.
  25. Sourjik, V. and Berg, H.C., 2004. Functional interactions between receptors in bacterial chemotaxis. Nature, 428(March), pp.1-4.
  26. Tyedmers, J., Mogk, A. and Bukau, B., 2010. Cellular strategies for controlling protein aggregation. Nature rev. Mol. cell biology, 11(11), pp.777-88.
  27. Wadhams, G.H. and Armitage, J.P., 2004. Making sense of it all: bacterial chemotaxis. Nature rev. Mol. Cell Biology., 5(12), pp.1024-37.
  28. Waters, J.C., 2009. Accuracy and precision in quantitative fluorescence microscopy. J.Cell Biology, 185(7), pp.1135-48.
  29. Wen, J.-D. et al., 2008. Following translation by single ribosomes one codon at a time. Nature, 452(7187), pp.598-603.
  30. Winkler, J. et al., 2010. Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. The EMBO J., 29(5), pp.910-23.
  31. Yarchuk, O., Guillerez, J. and Dreyfus, M., 1992. Interdependence of Translation, Transcription Degradation in the ZacZ Gene and mRNA. J.Molecular Biology, pp.581-96.
  32. Yu, J. et al., 2006. Probing gene expression in live cells, one protein molecule at a time. Science, 311(5767), pp.1600-03.
  33. Zhang, Z. et al., 2014. Single-molecule tracking of the transcription cycle by sub-second RNA detection. eLife, 2014(3), pp.1-20.
  34. Zhu, R. et al., 2007. Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models. J. Theoretical Biology, 246(4), pp.725-45.
Download


Paper Citation


in Harvard Style

Startceva S., Chandraseelan J., Visa A. and Ribeiro A. (2016). Quantitative Estimation of Long-living Fluorescent Molecules from Temporal Fluorescence Intensity Data Corrupted by Nonzero-mean Noise . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 17-24. DOI: 10.5220/0005605900170024


in Bibtex Style

@conference{biosignals16,
author={Sofia Startceva and Jerome G. Chandraseelan and Ari Visa and Andre S. Ribeiro},
title={Quantitative Estimation of Long-living Fluorescent Molecules from Temporal Fluorescence Intensity Data Corrupted by Nonzero-mean Noise},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)},
year={2016},
pages={17-24},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005605900170024},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, (BIOSTEC 2016)
TI - Quantitative Estimation of Long-living Fluorescent Molecules from Temporal Fluorescence Intensity Data Corrupted by Nonzero-mean Noise
SN - 978-989-758-170-0
AU - Startceva S.
AU - Chandraseelan J.
AU - Visa A.
AU - Ribeiro A.
PY - 2016
SP - 17
EP - 24
DO - 10.5220/0005605900170024